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This work explores the influence of motivation on choice behavior in a dynamic decision-making
environment, where the payoffs from each choice depend on one’s recent choice history. Previous
research reveals that participants in a regulatory fit exhibit increased levels of exploratory choice and
flexible use of multiple strategies over the course of an experiment. The present study placed promotion
and prevention-focused participants in a dynamic environment for which optimal performance is
facilitated by systematic exploration of the decision space. These participants either gained or lost points
with each choice. Our experiment revealed that participants in a regulatory fit were more likely to engage
in systematic exploration of the task environment than were participants in a regulatory mismatch and
performed more optimally as a result. Implications for contemporary models of human reinforcement
learning are discussed.
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A central assumption of contemporary work in learning and
decision making is that rational agents attempt to maximize re-
ward. However, the motivation literature highlights how the inter-
pretation of feedback or rewards is strongly influenced by active
goals held by the learner. In particular, a distinction is made
between approach goals—desirable end states that one wants to
work toward—and avoidance goals—undesirable end states that
one wishes to prevent from occurring (Carver & Scheier, 1998).
As an example, consider the contrast between working toward
earning an A grade versus working to avoid failure of a class.
Intuitively, it is unlikely that equivalent psychological states would
result from these two situations. Higgins (1997) suggested that two
distinct psychological states, evoked by approach and avoidance
goals, tune the sensitivity of the motivational system to gains and
losses in the environment.

Under this view, a promotion focus activates an approach mode
of processing that focuses the motivational system on the presence
or absence of gains, while a prevention focus activates an avoid-
ance mode of processing, focusing the motivational system on the
presence or absence of losses. There is a tendency for people to

have a chronic regulatory focus, but situations often induce a
regulatory focus that can overpower this long-term tendency
(Shah, Higgins, & Friedman, 1998).

Recent research suggests that the influence of regulatory focus
on cognition depends on the interaction between one’s regulatory
focus and the local reward structure of the environment—that is,
gains or losses resulting from one’s actions (Higgins, 2000; Mad-
dox, Baldwin, & Markman, 2006). When one’s regulatory focus
matches the environment’s reward structure, it is called a regula-
tory fit. Conversely, when regulatory focus and reward structure do
not match, it is called a regulatory mismatch (see Figure 1).

This line of research suggests that regulatory fit appears to
promote more flexible cognitive strategies across a number of
dissimilar tasks. For example, Worthy, Maddox, and Markman
(2007) examined decision making in a bandit task for which
optimal choice behavior required balancing exploration of un-
known options against the desire to exploit options that are
known to be rewarding. Participants given a promotion focus by
attempting to earn a prize made more exploratory choices (i.e.,
those that did not maximize expected utility) when they tried to
maximize the points gained from the decks of cards (i.e.,
regulatory fit) than when they tried to minimize losses (i.e.,
regulatory mismatch). In contrast, participants given a preven-
tion focus by trying to avoid losing a prize were more explor-
atory when they tried to minimize points lost (regulatory fit)
rather than when they tried maximizing points gained (regula-
tory mismatch). The implication is that regulatory fit leads to
more flexible or exploratory pattern of behavior than does
regulatory mismatch (a pattern also found in other tasks such as
category learning; Maddox et al., 2006). However, the exact
mechanism by which regulatory fit influences exploratory be-
havior is not clear. In this report, we consider the notion of
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exploration more deeply to shed light on the processes decision
makers may use to make optimal choices.

In typical tasks used to study reward learning—such as the
bandit problem used in the Worthy et al. (2007) experiment—the
payoffs of each option are independent of the choices just made by
the participant (e.g., Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006). Theoretical accounts of how people balance exploitation of
known information with exploration in order to collect new infor-
mation are a recent focus of study in the area of neural reinforce-
ment learning (RL). Computationally, participants’ tendencies to-
ward exploration or exploitation are often characterized by the
softmax rule, which parameterizes the tendency to explore relative
to the tendency to exploit (Sutton & Barto, 1998). Worthy et al.
found that participants in a fit exhibited increased exploration of
choices—with the unavoidable consequence of occasionally
choosing against their best interest. Model-based analyses re-
vealed that participants in a regulatory fit made more stochastic
decisions than did participants in a regulatory mismatch. Quan-
titatively, participants in a regulatory fit were found to have
smaller values of the softmax exploitation parameter than did
participants in a regulatory mismatch, providing a formal
framework for understanding the impact that regulatory fit has
on exploratory choice behavior.

However, the effectiveness of particular exploratory behav-
iors hinges on the nature of the decision-making environment.
Consider foraging in a physical space, where one’s location can
be thought of as the current state. Assume that the most re-
warding state is far away from the decision maker’s current
state. To reach this state, the decision maker must have a desire
to explore distant novel states and discover the rewards in these
states. To effectively reach these distant states to discover their
rewards, the decision maker must repeatedly produce the same
action (e.g., moving west), as undirected random movement
will likely not get one very far in any direction. Consider, as an
anecdote, if Christopher Columbus’s exploration was defined
by merely sailing in a random direction each day: His ships
would not likely have traveled a few miles beyond the harbor!
Thus, efficient exploration entails dependencies between one’s
current choice and past choices.

By contrast, in the softmax framework, exploration is charac-
terized as a stochastic choice made independently of previous

choices. In light of this distinction, it is not clear whether a
regulatory fit engenders more systematic exploration of deci-
sion spaces—whereby exploration is a multiple-trial phenome-
non (akin to “temporal abstraction”; Botvinick, Niv, & Barto,
2009)— or whether a regulatory fit simply results in more
stochastic, trial-independent choices. The bandit task used by
Worthy et al. (2007) does not disambiguate between these two
methods of exploration, because both methods support effective
learning of choice payoff contingencies. In this article, we
examine choice behavior in a task that helps us disentangle
these possibilities. This distinction is theoretically significant
because it helps determine whether a regulatory fit simply
increases the “noise” in individuals’ response strategies (which
helps in some environments) or whether it brings about a more
systematic change in the way people explore their environment.
Previous investigators have found that a regulatory fit also
facilitates generation of anagram solutions (Shah et al., 1998)
and generation of correct associates for difficult remote asso-
ciates task (Mednick & Mednick, 1967) items (Markman, Mad-
dox, & Baldwin, 2007). These tasks do not elucidate the nature
of exploratory behavior brought about by regulatory fit.

The task we use is a two-option, repeated-choice, decision-
making task termed the rising optimum, previously used to inves-
tigate simple RL accounts of behavior (Montague & Berns, 2002)
and the problem of temporal credit assignment in human sequen-
tial decision making (Bogacz et al., 2007). The payoff structure for
this task is illustrated in Figure 2. Unlike standard bandit tasks,
payoffs on each trial are dependent on the proportion of selections
made to each option over a 20-trial moving window. Thus, this
proportion of responses defines the current state of the task envi-
ronment (Gureckis & Love, 2009). If the next response changes
the relative proportion of the previous 20 responses, then the state
changes. In the rising optimum, there are 21 possible states.

Figure 1. Overview of states evoking regulatory fit and mismatch. When
one’s situational regulatory focus matches the reward structure of the
environment, a regulatory fit results. In contrast, when one’s situational
regulatory focus does not mach the reward structure of the environment, a
regulatory mismatch results.
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Figure 2. Payoff functions for two choices as a function of choice
allocation. The payoff received from a choice depends on the proportion of
A choices made over the last 20 trials, represented by the horizontal axis.
The solid black and gray lines depict the payoff curves for Choice A and
Choice B, respectively, and the dashed line depicts the expected average
payoff for each choice allocation. In this task, optimal choice behavior
requires consistent A choices every trial.
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For example, if the participant makes only B choices for 20
consecutive trials—effectively making his or her fractional allo-
cation to the A choice 0—the payoffs from an additional selection
of Choice A or B would be .38 and .19, respectively. If the
participant makes one A choice at this point, his or her response
allocation would change to .05, as only one out of 20 of the last
trials were A choices. Consequently, the payoffs for the next
choice of A or B would be .36 and .20, respectively. Thus, the
payoffs associated with the each choice fluctuate with the past
choice behavior of the participant. It is important to note that a
choice remains in the participant’s choice history for 20 trials—
with the consequence that a single B choice will prevent a partic-
ipant from reaching an allocation of one for 20 trials. In this task,
optimal long-term choice behavior requires consistent A choices as
the global optimum is located where the participant’s fractional
choice allocation to choice A is one.

Prior experimental work reveals that participants easily be-
come stuck in a local cycle around the crossing point of the
curves where the fractional allocation to choice A is approxi-
mately .30 (Bogacz et al., 2007). To illustrate, consider partic-
ipants who make repeated A choices until they find themselves
at the crossing point of the two curves (see Figure 2). As they
continue to make A choices and move rightward, they will
encounter a dip in payoffs, potentially discouraging further
movement in that direction. At this point, greater payoffs re-
sulting from B can lure the decision makers leftwards, until they
pass the crossing point and A becomes more attractive again.
This globally suboptimal response strategy is predicted by
simple RL models of choice such as the temporal-difference
learning algorithm (Montague & Berns, 2002). In this model,
decision making is driven by individual outcomes at the local,
trial-to-trial level, which results in suboptimal behavior.

In the rising optimum task, finding the globally optimal strategy
requires exploration of the possible states in the decision space.
However, unlike the bandit tasks used in previous research, this
task structure requires more systematic behavior to explore the
domain. For example, in order to move to the right of the crossing
point, participants must make repeated selections to one of the
options (e.g., five B choices followed by 15 A choices). Thus, the
task is more akin to the foraging example above, in that a decision
maker is more likely to uncover potentially rewarding states if he
or she makes the same actions repeatedly. Systematic responses
like this are hard to model with the softmax rule, because this rule
assumes that the decision made on each trial is probabilistic and is
independent of the choices made on previous trials. While decision
makers utilizing an entirely exploitative (i.e., deterministic) deci-
sion rule will find themselves cycling around the crossing point of
the payoff curves (Montague & Berns, 2002), a stochastic rule will
lead decision makers to explore the state space in a random walk
fashion. In the limit, as the number of trials goes to infinity, the
stochastic softmax decision rule will eventually visit every state in
the task. However, this undirected exploration is unlikely to visit
every state in a small number of trials. As an illustration, the solid
line in Figure 3 presents a single simulation of a softmax model
with a stochastic decision rule. This model fails to explore far
beyond the middle of the state space. Exploring in a more system-
atic fashion by making long streaks of selections to single choices
allows learners to traverse the state space more effectively and
uncover the optimal choice allocation. A simulation of a softmax

model augmented with a parameter governing the model’s ten-
dency to repeat individual choices (described in detail below) is
depicted by the dotted line in Figure 3. Streaky choice behavior
leads to a broader exploration of the state space.

In this study, we teased apart these exploration processes in
order to better understand how regulatory fit bears on the decision
maker’s tendency to engage in systematic exploration of the en-
vironment. To this end, we manipulated participants’ global mo-
tivational state (i.e., regulatory focus) and the environment reward
structure to determine the influence of regulatory fit on choice
behavior in the rising optimum task. We reasoned that if a regu-
latory fit leads to more stochastic responding than a regulatory
mismatch, then we would expect that neither participants in a
regulatory fit nor in a regulatory mismatch would find the globally
optimal strategy in this task (i.e., 100% allocation to A). Alterna-
tively, if regulatory fit facilitates systematic exploration of the task
decision space, we expected that participants in a regulatory fit
should be more likely than participants in a regulatory mismatch to
find the globally optimal strategy. According to both of these
accounts, we reasoned that regulatory mismatch participants
should generally make decisions informed by local, trial-to-trial
estimates of choice payoffs in a manner consistent with simple
softmax accounts of learning in the rising optimum task (Mon-
tague & Berns, 2002), resulting in overall choice allocations
around the crossing point.

To maximize payoffs in the rising optimum task, the learner
must systematically explore in order to uncover the possible states
in the decision space, a strategy that is not apparent at the outset of
the task. We have reason to believe that regulatory fit should
promote systematic exploration in the rising optimum task. Deci-
sion makers in a regulatory fit have been shown to continually
sample options in bandit tasks in order to gather more information
about potential changes in payoffs, whereas decision makers in a
regulatory mismatch exploit their early knowledge about payoffs
and fixate on an early solution (Worthy et al., 2007). More ab-
stractly, this work suggests that a regulatory fit engenders the use
of strategies that reduce uncertainty about rewards in the environ-

Figure 3. Example of two individual model simulations of the rising
optimum task: a softmax model with a stochastic decision rule (solid line)
and a streaky decision rule mode (dashed line).
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ment. In the rising optimum task, we expected that regulatory fit
drives choice behavior toward exploring distant states with un-
known rewards.

We hypothesized that participants in a regulatory fit would seek
out all possible states of the decision space in order to uncover the
optimal choice allocation (100% A choices). To this end, they
should engage in systematic exploration, exhibiting streaks of
single choices in order to move about the decision space. In
contrast, we hypothesized that participants in a regulatory mis-
match would not make choices directed by the reduction of un-
certainty in distant states, and thus would exhibit suboptimal local
matching behavior (i.e., choice allocations near the crossing point).
Note that our expected behavioral effects do not rely on regulatory
focus or reward structure singularly but rather on their crossover
interaction as in Maddox et al. (2006) and Worthy et al. (2007).
Besides contributing to a deeper understanding of the influence of
regulatory fit on exploratory choice, understanding motivational
factors that influence effective learning in environments with un-
certain structures at the outset is of practical concern.

Experiment

We placed participants in a variant of the rising optimum task,
whose payoff schedule (under the gains reward structure) is de-
picted in Figure 2. The gains and losses framing manipulations
were designed to result in informationally equivalent situations
(Shah et al., 1998). Participants in the gains condition started with
0 points and gained between 0 and 1 points with each choice, while
participants in the losses condition started with 0 points and lost
between 0 and 1 points with each choice. The bonus criterion was
positioned such that participants would need to earn at least 75%
of the total possible points at the end of the experiment. Conse-
quently, participants who discovered and persisted with the glo-
bally optimal response strategy would meet the bonus criterion,
while those who remained near the crossing point would not.

Participants in a promotion focus were told that they would
receive an entry into a drawing for a one in 10 chance at winning
$50 if their performance met the bonus criterion. Participants in a
prevention focus were given an entry into the same drawing and
were told that they had to meet the bonus criterion to avoid losing
it. This framing manipulation was designed so that participants in
the promotion and prevention focus conditions were effectively in
the same economic situation (Shah et al., 1998).

Method

Participants. Forty undergraduates from the University of
Texas at Austin community participated in the experiment for
course credit. They were also given the opportunity to win an entry
into a drawing for $50 cash and were told that no more than 10
participants would be included in each drawing. The two between-
subjects independent variables were the situational regulatory fo-
cus (promotion and prevention) and the reward structure of the
task (gains and losses).

Materials. Participants sat at a computer to perform this study.
At the start of the experiment, participants were informed that they
would either earn (promotion condition) or keep (prevention condi-

tion) an entry into the drawing if they met a bonus criterion.
Participants were instructed to make repeated choices with the goal
of maximizing overall, long-term gains of points (gains condition)
or minimizing overall long-term losses of points (losses condition).

Procedure. At the start of the experiment, each participant’s
response history was randomized such that the mean starting
allocation of A choices was .50 across all participants.1 For each
trial, participants were presented with two buttons labeled Choice
A and Choice B. The mapping of response buttons to choices was
counterbalanced across participants. The task interface under the
gains condition is shown in Figure 4. For each trial, participants
clicked one of the buttons to indicate their choice, and the white
payoff bar grew (or fell, in the losses condition) vertically to
indicate the amount of points gained (or lost, in the losses condi-
tion). There was no time limit for making choices.

The payoff on each trial was a function of the relative fraction
of the number of A choices made by the participant over the last
20 trials. Specifically, the payoff for each option in the gains
condition, with respect to relative fraction of A choices, is depicted
in Figure 2. Gains payoffs were all between 0 and 1. Payoffs in the
losses condition were calculated by subtracting 1 from the gains
payoffs, resulting in all negative payoff values. Cumulative gains
(or losses) were displayed on the side of the screen, as a bar that
grew (or shrunk, in the losses condition) in relation to the bonus
criterion. This bonus criterion was determined by calculating the
average cumulative payoffs after 250 trials with an A choice
allocation of .75. This criterion was equated across the gains and
losses conditions.

After 250 trials, participants were given feedback on whether
they had met the bonus criterion. If they met the bonus criterion,
participants in the promotion focus condition were given a ticket
and were told to enter it in the drawing, and participants in the
prevention focus condition were informed that they could keep
their ticket and enter it in the drawing.

Results

Performance measures. As a primary measure of perfor-
mance, Figure 5 shows the mean proportion of optimal A choices
calculated over blocks of 25 trials. The results were consistent with
the hypothesis that participants in a regulatory fit were better able
to find the globally optimal choice strategy. We conducted a 2
(regulatory focus) � 2 (reward structure) � 10 (trial block) anal-
ysis of variance (ANOVA) on the number of A choices made
across the 10 blocks, revealing a significant two-way interaction

1 To establish that differences in choice performance were not due to
starting choice allocations (which were randomly determined), we calcu-
lated the correlation between initial allocation to A and overall choice
allocations across participants and found no significant relationship,
r(38) � –.07, p � .67. Additionally, a 2 (regulatory focus) � 2 (reward
structure) ANOVA conducted on initial choice allocations did not reveal a
significant interaction, F(1, 38) � 0.49, p � .49, or main effects of reward
structure, F(1, 38) � 0.34, p � .56, and regulatory focus, F(1, 38) � 1.04,
p � .31. In summary, we found little reason to believe that starting
allocations influenced overall choice behavior or differed systematically
between groups.
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between regulatory focus and reward structure, F(1, 38) � 17.32,
p � .001, as well as a significant main effect of reward structure,
F(1, 38) � 4.48, p � .05, and a significant main effect of trial
block, F(9, 30) � 7.86, p � .01. All other main effects and
interactions failed to reach significance.

As another measure of optimal performance, we calculated each
participant’s final distance from the bonus criterion (i.e., points
short of the bonus criterion at the end of 250 trials), depicted in
Figure 6. A 2 (regulatory focus) � 2 (reward structure) ANOVA
on this measure revealed a significant interaction, F(1, 38) �
20.05, p � .001, with no significant main effects. Among partic-
ipants in the gains reward structure, participants in a promotion
focus (M � 39.96, SD � 8.67) came significantly closer to the
bonus criterion than did participants in a prevention focus (M �
66.53, SD � 4.91), t(18) � 2.66, p � .05. For participants in the
losses reward structure, participants in a prevention focus (M �
52.68, SD � 4.40) ended significantly closer to the bonus criterion
than did participants in a promotion focus (M � 75.06, SD �
0.72), t(18) � 5.02, p � .001.

We also analyzed the overall proportion of trials for which
participants made optimal A choices, collapsed over the course of
the experiment. A 2 (regulatory focus) � 2 (reward structure)
ANOVA revealed a significant interaction, F(1, 38) � 32.48, p �
.001, and no significant main effects. Among participants in the
gains reward structure, participants in a promotion focus (M �
0.591, SD � 0.05) made significantly more A responses than did
participants in a prevention focus (M � 0.389, SD � 0.03), t(18) �
3.30, p � .01. For participants in the losses reward structure,
participants in a prevention focus (M � 0.522, SD � 0.03) made
significantly more A responses than did participants in a promo-
tion focus (M � 0.330, SD � 0.01), t(18) � 5.97, p � .001.

Model-based analysis. While the performance results suggest
that regulatory fit and mismatch affect the degree to which partic-
ipants optimally allocate choices, they do not directly address our
prediction that participants in a regulatory fit would exhibit more
systematic exploration of the decision space than would partici-
pants in a regulatory mismatch. The aim of our model-based
analysis was to illuminate patterns of systematic exploration in
participants’ choice behavior using choice streakiness as a proxy
measure.

The two-parameter standard softmax model predicts the proba-
bility of making choice ai on trial t, informed by the participant’s
choice and outcome experience up to trial t:

P�ai, t� �
exp�� � Q�ai, t��

�
j�1

2 exp�� � Q�aj, t��
, (1)

where � is an exploitation parameter (Sutton & Barto, 1998) and
Q(ai, t) is an estimate of the payoff associated with choice ai. The
model utilizes an incremental updating rule to inform estimated
choice payoffs at the next trial t 	 1:

Q�aj, t � 1� � Q�aj, t� � 
�r�t � 1� � Q�aj, t��, (2)

where 
 is a learning rate parameter, 0 � 
 � 1, and r(t 	 1) is
the payoff from the chosen option aj. This model is identical to that
used by Worthy et al. (2007).

The extended model adds a third streak parameter, prepeat, that
specifies the probability with which the model makes the same
choice on trial t 	 1 as it did on trial t. The probability of choosing

Figure 4. The task interface shows the two choice buttons, the rising/
falling payoffs bar in the center, and the cumulative point meter (in relation
to the bonus criterion) on the right side of the display.

Figure 5. Proportion optimal (A) choices made, by group, over the course
of the 250 trials, in blocks of 50 trials. Error bars indicate standard error of
the mean.
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action ai is computed from the softmax probability from Equation 1
and prepeat:

P�ai, t�choicet�1 � ai�

� prepeat � �1 � prepeat�� exp�� � Q�ai, t��

�
j�1

2 exp�� � Q�aj, t��� . (3)

Intuitively, larger values of prepeat indicate larger streaks of
selections of the same option. For each model, we sought param-
eter estimates that maximized the likelihood of each participant’s
observed choices:

Lmodel � �
t

Pc,t (4)

where ct reflects the choice made on trial t, informed by partici-
pant’s choice and payoff experience up to trial t. We used G2 to
assess the fit of the streaks model relative to the standard nested
softmax model, where

G2 � 2�ln�Lstreak� � ln�Lsoftmax��. (5)

Figure 7 depicts the proportion of participants, by condition,
best fit by the streak model (relative to the chi-square distribution
at 
 � .05, df � 1). A three-way chi-square test revealed that
best-fitting model was not independent from motivational condi-
tion, �2(2, N � 104) � 18, p � .05, suggesting that regulatory fit
influenced the degree to which the streak parameter improved the
fit of the standard softmax model.

As expected, we found that people in a regulatory fit were
streakier in their choices than were those in a regulatory mismatch.
It is possible that people in a fit were more likely to find the
optimal state and made repeated choices of A in order to maintain
that state. In this case, the streaky model could simply be rede-
scribing stable optimal choice behavior. To disentangle these pos-
sibilities, we compared goodness of fit of the standard and streaky
models for only exploratory choices—that is, trials in which par-

ticipants selected options with smaller estimated payoffs (cf. Daw
et al., 2006). A better fit by the streaky model would suggest
response streaks were being made to traverse the decision space in
the face of inferior immediate payoffs. Ninety percent of partici-
pants who were best fit overall by the streaky model were also best
fit by the streaky model for exploratory trials (G2 relative to the
chi-square distribution at 
 � .05, df � 1), suggesting that the
streaky model fits are describing exploratory choice behavior and
not merely redescribing stable optimal choice behavior.

Further, we analyzed the estimated values of the streak param-
eter across all participants regardless of the model that best char-
acterized their choice behavior, in order to evaluate the degree to
which motivational condition affected participants’ tendency to
make long streaks of single choices. The average estimated values
of this parameter are depicted in Figure 8. A 2 (regulatory focus) �
2 (reward structure) ANOVA revealed a significant interaction
between regulatory focus and reward structure, F(1, 38) � 9.38,
p � .01. In the gains reward structure, participants in a promotion
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focus (M � 0.54, SD � 0.19) exhibited higher values of the streak
parameter than did participants in a prevention focus (M � 0.27,
SD � 0.20), t(18) � 3.41, p � .01. In the losses reward structure,
participants in a prevention focus (M � 0.40, SD � 0.23) exhibited
higher values of the streak parameter than did participants in a
promotion focus (M � 0.26, SD � 0.22), although the effect was
not significant, t(18) � 2.13, p � .09. There were no significant
main effects of regulatory focus or reward structure. The results of
these two model-based analyses suggest that participants in a
regulatory fit reveal a signature of streaky behavior, which facil-
itates systematic exploration in the rising optimum.

Discussion

We examined the effects of regulatory fit on choice in a dy-
namic task environment in which discovering the reward-
maximizing strategy is facilitated by systematic exploration. While
previous studies of the effect of motivation on choice behavior
have found that regulatory fit engenders more flexible or explor-
atory decision making, these results have typically been modeled
as trial-independent noise (Worthy et al., 2007). The present work
suggests that regulatory fit also facilitates a more systematic form
of exploration that persists across multiple trials. In particular, we
found that compatibility between regulatory focus and the reward
structure of the environment engenders systematic exploration of
the decision space, improving the ability to find a reward-
maximizing strategy. It should be noted that task performance
differences did not depend solely on reward structure (i.e., gains
and losses) but rather on the interaction between situational regu-
latory focus and task reward structure.

Our RL model provides a characterization of systematicity
manifested in participants’ choice behavior. Note that the streaky
tendency described by the model is not a general exploration
solution but rather facilitates efficient movement in decision
spaces where sequences of repeated responses move the decision
maker between states. In our model-based analysis, fits of the
streaky model reveal that participants in a regulatory fit are not
merely making more stochastic choices as in Worthy et al. (2007)
but are exhibiting increased conditional dependency between
choices. In the rising optimum, the streak parameter can force the
model to make repeated choices of a locally inferior option (e.g.,
at the dip in the A payoff curve), facilitating efficient traversal of
the decision space and discovery of the global optimality of the A
option. Specifically, increased streakiness resulted from height-
ened exploration of the decision space, ultimately leading to better
performance.

While the present study augments Worthy et al.’s (2007) em-
pirical account of regulatory fit’s influence on exploratory choice,
the mechanism by which exploratory behavior arises in these tasks
remains an open question. One speculative notion posits that
promotion and prevention foci are expectations about the projected
state of the world (Markman et al., 2007). Under this view, when
the reward structure of the environment fails to match one’s
expectations, a plausible initial reaction is to engage fast-acting
strategies until the environment can be better understood. Con-
versely, when the reward structure matches expectations, people
should bring their full executive resources to bear in that environ-
ment. A question arises about the source of the exploratory be-
havior shown by participants in a regulatory fit in this experiment.

It is not yet clear whether regulatory fit, in contrast to regulatory
mismatch, promotes a belief that there are many possible states (as
in the foraging example above) or whether it merely encourages
exploration of distant states. Further, at least two candidate mech-
anisms could be guiding exploration of distant states. One possi-
bility is that decision makers are initially optimistic about the
rewards in to-be-experienced states, driving choice toward these
states (so that they have “optimistic initial values”: Sutton & Barto,
1998). A second possibility is that choices are directed toward
states with higher calculated uncertainty through the use of bo-
nuses for exploration (Dayan & Sejnowski, 1996). These issues
should be addressed in future work.

The tendency exhibited by participants in a regulatory fit toward
systematic exploration is closely related to “temporal abstraction”
in RL by which agents can reduce the effective size of the decision
space through structured, multiple-action patterns of exploration
(Botvinick et al., 2009). A number of psychological models en-
capsulate this approach, proposing that individuals make decisions
based on the experienced rewards of higher level strategies rather
than on individual choices (Erev & Barron, 2005; Gray, Sims, Fu,
& Schoelles, 2006; Rieskamp & Otto, 2006). The patterns of
choice revealed here suggest the possibility that people may be
engaging in more structured exploration in simple bandit tasks
than is described by the softmax decision rule. Further, our results
underscore the importance of examining the influence of the decision
maker’s choice history—in addition to reward history—on sequential
choice behavior (Lau & Glimcher, 2005). This report adds to the
body of findings from the decision-making and classification lit-
eratures (Maddox et al., 2006; Worthy et al., 2007) suggesting that
motivational factors exert a crucial influence on human cognition
and behavior.
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Correction to Klauer et al. (2010)

In the article “Conditional Reasoning in Context: A Dual-Source Model of Probabilistic Infer-
ence,” by Karl Christoph Klauer, Sieghard Beller, and Mandy Hütter (Journal of Experimental
Psychology: Learning Memory, and Cognition, 2010, Vol. 36, No. 2, pp. 298–323), the dual-source
model is overparameterized. Only the products 
� of the 
 and � parameters are uniquely identified
by the data. This has no consequences for the � parameters, for ratios of � parameters estimated with
the same 
, for ratios of 
 parameters associated with the same � parameters, nor for the fit values.
The model fit is, however, achieved more parsimoniously than stated in Klauer et al. because one
parameter (Experiments 1, 2, and 4) or two parameters (Experiment 3) are redundant.

To fix the scale for � and 
 parameters, one of them has to be set to one. We recommend to set
the largest of �(MP), �(MT), �(AC), and �(DA) equal to one. This yields unique parameter estimates
for � and 
 but has consequences for their interpretation: Differences in overall level of the profile
of � parameters over the four inferences (due to, e.g., differences in cognitive load), if any, would
be removed from the � estimates and would show up in the 
 parameters. The above constraint is
the one implicitly imposed almost perfectly by the estimation method used in Klauer et al. (2010).
In consequence, when the constraint is explicitly enforced, the numerical values of the parameter
estimates reported in Klauer et al. change only minimally, and the outcome of all of the significance
tests reported remains the same.
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