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THE CONCRETE SUBSTRATES OF ABSTRACT
RULE USE

Bradley C. Love, Marc Tomlinson, and Todd M. Gureckis

Abstract

We live in a world consisting of concrete experiences, yet we appear to
form abstractions that transcend the details of our experiences. In this
contribution, we argue that the abstract nature of our thought is overstated
and that our representations are inherently bound to the examples we experi-
ence during learning. We present three lines of related research to support this
general point. The first line of research suggests that there are no separate
learning systems for acquiring mental rules and storing exceptions to these
rules. Instead, both items types share a common representational substrate that
is grounded in experienced training examples. The second line of research
suggests that representations of abstract concepts, such as same and diVerent
that can range over an unbounded set of stimulus properties, are rooted in
experienced examples coupled with analogical processes. Finally, we consider
how people perform in dynamic decision tasks in which short‐ and long‐term
rewards are in opposition. Rather than invoking explicit reasoning processes
and planning, people’s performance is best explained by reinforcement learning
procedures that update estimates of action values in a reactive, trial‐by‐trial
fashion. All three lines of research implicate mechanisms of thought that are
capable of broad generalization, yet inherently local in terms of the procedures
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used for updating mental representations and planning future actions. We end
by considering the benefits of designing systems that operate according to these
principles. ! 2008, Elsevier Inc.

I. Introduction

We live in a world consisting of concrete experiences. Moment to moment,
we learn and make decisions based on these experiences. Given this charac-
terization of our environment, it is unclear what would constitute a true
abstraction, let alone how we could acquire and retrieve such knowledge
based on the sensory cues provided by the environment. After all, we are
situated in the same world as pigeons, grasshoppers, and newborn humans,
not in a platonic realm of universals that exist independently of the particu-
lars of our concrete experiences.

This view of our environment has strong implications for theories of
learning and representation. It predicts that our knowledge structures are
updated in a moment‐to‐moment fashion, instead of being calculated as
global statistics or parameters. Observed ordering eVects in learning support
this view (Clapper & Bower, 1994; Medin & Bettger, 1994). Our view also
predicts that it is not possible to acquire true abstractions. Even when people
seem to have acquired and successfully applied an abstraction, we predict
that the concrete basis of this behavior should become apparent on closer
inspection. Following this view, findings in category learning demonstrate
that experienced examples influence classification decisions in rule‐governed
tasks. For example, similarity eVects exert themselves even when people
apply explicit rules (Allen & Brooks, 1991) and exemplar frequency aVects
performance in seemingly rule‐based tasks (Nosofsky, 1991; Rouder &
RatcliV, 2006).

In light of these findings, one reasonable position is that there is both an
abstract and concrete basis to cognition. Dual processing theories are preva-
lent in cognitive science (Ashby & Maddox, 2005; Sloman, 1996). Sloman
(1996) distinguishes between a fast associative system that operates accord-
ing to similarity to past experiences and an analytical system that is slower
and more deductive in nature. Reasoning fallacies, such as the conjunctive
fallacy (Tversky & Kahneman, 1983) and susceptibility to framing eVects
(Tversky & Kahneman, 1981), are attributable to associative processes,
whereas the ability to appreciate and overcome these pitfalls is attributable
to the analytical system.

One fundamental challenge for dual accounts is establishing the necessity of
the abstract system. Adapting to the local statistics of the environment,
calculating similarities, and forming analogies to past examples oVer substan-
tial reasoning abilities without invoking rule systems (Forbus, Gentner, &
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Law, 1994; Ross &Kennedy, 1990). It is not clear that non‐rule‐based systems
are inferior in terms of the range of problems that can be successfully
addressed. Accounting for human‐level competency might not require posit-
ing rule‐based systems. For example, language is often viewed as a uniquely
human competence, but even in this domain arguments regarding the neces-
sity of rule systems are common. For example, the language processing
literature oVers ample examples of debates between proponents of single
and dual accounts for domains like the past tense (Pinker & Prince, 1988;
Rumelhart & McClelland, 1987). Challenges to these dual route accounts
bring into question the necessity of positing abstract rule‐based processes and
representations.

In this chapter, we argue that the prevalence of abstract representations in
cognition is overestimated. We do not argue that people cannot create or
follow sequences of rules. For example, baking a cake according to a recipe
involves executing an algorithm that was constructed by another human.
Instead, we argue that seemingly abstract rule representations are built on
and are intimately linked to concrete experiences. We predict that our repre-
sentations never fully transcend these concrete experiences that they are built
on and, therefore, are not truly abstract in nature. Upon closer inspection, the
messy underpinnings of these seemingly abstract rules are revealed.

We oVer three supportive cases drawn from our own research. In each
case, seemingly abstract processes and representations appear to govern
performance, but on closer examination performance is instead governed
by incremental learning processes operating over experienced examples. We
oVer model‐based explanations for all three cases considered. Each model
learns on a trial‐by‐trial basis by adjusting its memory representations based
on the current example. These learning mechanisms do not follow from a
rational analysis in that they update their category estimates based on local
statistics from the immediate context (e.g., the discrepancy between the
current memory representation of a category and the current stimulus).

In the first case study, we consider how people learn and apply rules,
as well as encode exceptions to rules. We find evidence that people do not
posses separate rule and exception systems, but instead rely on a single
cluster system that is intimately influenced by the concrete details of the
training set. Even when subjects mentally rehearse rules, much like a baker
following a recipe step‐by‐step, recognition performance following learning
reveals that the representation of rules is intimately linked to the distribution
of experienced examples.

In the second case study, we extend this analysis to abstract rules in which
the acquired rules are not bound by concrete stimulus aspects. For example,
abstract notions like same and diVerent do not range over specific stimulus
properties, like has blue eyes or has two wheels. For example, two identical
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wheelbarrows are the same as are two identical comets, and this notion of
sameness is not based on a shared property spanning wheelbarrows and
comets. We find evidence that such seemingly abstract notions are rooted
in experienced exemplars. Analogy to these stored exemplars enables seem-
ingly abstract rule performance, but the concrete substrate enabling this
performance can be seen by considering stimulus probes that fall in between
relational categories. The results from these probes reveal a family resem-
blance structure to abstract concepts that is rooted in experienced exemplars.

In the final case study, we examine how people learn to reason about
rewards in a dynamic decision task that puts short‐ and long‐term rewards
in opposition. People’s representation of the underlying system, which can be
manipulated by introducing perceptual cues, strongly constrains perfor-
mance. People eventually gain an understanding of the dynamics of the
system, but the trajectory of learning implicates, as in the previous two
cases, a trial‐by‐trial learning mechanism that makes local updates to esti-
mates of the value of particular actions. All three cases suggest that our
abstract knowledge supervenes on concrete representations and processes.

II. When Rules are not Rules: Rule‐Plus‐Exception
Category Learning

In our first case study, we consider how people acquire rules and master
exceptions to these rules in category learning tasks. The results we review
suggest that even when people explicitly acquire and apply a rule, closer
inspection of the data reveals a strong dependency on the concrete examples
experienced during training. Recent studies in human rule‐plus‐exception
learning strongly suggest that people do not fully abstract away the details
of the training set when acquiring rules. Rather than propose a dual system
model to account for these results, we propose a clustering model. This model
does not contain a rule route, but nevertheless explains rule‐like behavior,
as well as subtle, but diagnostic, deviations from rule‐like behavior that will
be discussed later in this section.

Proposals for category representation are diverse, ranging from exemplar
based (Medin & SchaVer, 1978) to prototype based (Smith & Minda, 1998)
and include proposals between these two extremes (Love, Medin, &
Gureckis, 2004). Determining the best psychological model can be diYcult
as one model may perform well in one situation but be bested by a competing
model in a diVerent situation. One possibility is that there is not a single
‘‘true’’ model.

In category learning, this line of reasoning has led to the development of
models containing multiple learning systems. These more complex models
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hold that category learning behavior reflects the contributions of diVerent
systems organized around discrepant principles that utilize qualitatively
distinct representations. The idea that multiple learning systems support
category learning behavior enjoys widespread support in the cognitive neu-
roscience of category learning (see Ashby & O’Brien, 2005, for a review and
Nosofsky & Zaki, 1998, for a dissenting opinion). Multiple systems models
typically include a rule system.

Multiple systemmodels of category learning detail the relative contributions
of the component learning systems. The relative contributions can depend
on the circumstances. For example, ATRIUM (Erickson & Kruschke, 1998)
contains a rule and exemplar learning system. Which system is operable is
determined by a gating system, allowing diVerent classification procedures to
be applied to diVerent parts of the stimulus space. For example, familiar items
could be classified by the exemplar system, whereas rules could be applied to
unfamiliar items. The power to apply qualitatively diVerent procedures to
diVerent stimuli is the hallmark of multiple systems models.

Proposing multiple systems begs the questions of how many systems are
present and how do they interact. Are there two, three, or thirty‐four
systems? Do some systems combine outputs whereas others shunt each
other? These questions are not trivial to answer. For example, a two system
model may suYce for one data set, but a new manipulation could provide
evidence for a third system. As systems propagate, the complexity of the
overall system dramatically increases. Building in this degree of complexity
complicates model evaluation.

Instead of proposing a complex model of category learning containing
multiple systems, we advocate a complex systems approach to category
learning modeling in which multiple learning systems emerge from a flexible
and adaptive clustering mechanism’s interactions with the environment.
We evaluate the hypothesis that a relatively small set of learning principles
can eVectively ‘‘grow’’ knowledge structures that satisfy the needs that
multiple systems models are intended to address. Our proposal does not
require positing a separate rule route and instead maintains some details
about the experienced examples. The forces of trial‐by‐trial learning grow
knowledge structures that approximate abstract rules, but are in fact more
consistent with human performance.

A. PAST WORK AND CURRENT CHALLENGES

Previous work with the SUSTAIN model, which is the precursor to the
model that we introduce here, has partially delivered on the promise of
flexibly building needed knowledge structures. SUSTAIN is a clustering
model that starts simple and recruits clusters in response to surprising events,
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such as encountering an unfamiliar stimulus in unsupervised learning or
making an error in supervised learning (cf. Carpenter & Grossberg, 2003).
Surprising events are indicative that the existing clusters do not satisfy the
learner’s current goals and that the model should grow new knowledge
structures (i.e., clusters). These clusters are modified by learning rules that
adjust their position to center them amidst their members. Dimension‐wide
attention is also adjusted to accentuate stimulus properties that are most
predictive across clusters.

Although simple, these growth dynamics allow SUSTAIN to address a
wide range of human learning data across various paradigms including
unsupervised, inference, and classification learning (Love et al., 2004).
Depending on the circumstances of the learning situation (i.e., depending
on what the task stresses and target categories), SUSTAIN can evolve
clusters that resemble prototypes, exemplars, or rules (Love, 2005). Careful
behavioral experiments support the conclusion that SUSTAIN is not merely
mimicking these other models, but that human learners’ and SUSTAIN’s
representations are in accord (Sakamoto & Love, 2004). Importantly, SUS-
TAIN’s clusters maintain a great deal of information about the experienced
exemplars and their distributions of feature values. Although some abstrac-
tion occurs when items cluster together, the degree of information preserva-
tion appears to be in accord with human learners and is to some extent
dictated by the nature of the task and domain. In summary, SUSTAIN
accounts for both classical studies of category learning and the more con-
temporary work that suggests that conceptual organization is determined by
the interplay of information structures in the environment and task pressures
or goals (Markman & Ross, 2003).

Despite these successes, considerable challenges remain. Two basic chal-
lenges are (1) to formalize the notion of a goal or task pressure and specify
how such factors direct learning and (2) to endow learning models with the
flexibility to develop representations that approach the range, and richness of
the representations that human learners build when learning from examples.

Although SUSTAIN made strides in capturing the influence of goals, its
notion of goal is underdeveloped. In particular, SUSTAIN is sensitive in an
all‐or‐none fashion to whether a particular stimulus dimension is queried
(e.g., an unknown perceptual feature or category label). Ideally, the notion of
goal would be more encompassing and continuous to capture all possible
cases from pure classification learning in which the only goal is to predict
category membership to pure unsupervised learning in which the goal is to
predict every feature (i.e., to capture the correlational structure of the envi-
ronment in an unbiased fashion). Importantly, the formal notion of goal
should directly aVect the recruitment and modification of clusters in a
principled way. Learning rules should update clusters to reflect the goal
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measure, and clusters should be recruited in light of how well the current
clusters satisfy the current goal measure.

In regards to the second basic challenge, current models like SUSTAIN are
too limited in terms of the range of knowledge structures they can construct.
For instance, SUSTAIN’s attentional mechanism accentuates certain fea-
tures that are predictive in the current task, but is constrained such that every
cluster is focused on the same set of properties. In contrast, people stress
diVerent properties in diVerent domains. For example, when shopping for
clothing, color is important, but when shopping for a computer the type of
processor is important (a feature not even relevant to clothing). To evolve
these kinds of knowledge structures and to apply diVerent ‘‘procedures’’ to
diVerent parts of the stimulus space as multiple systems models do, each
cluster needs to be able to accentuate the features that satisfy the learning
goals for the stimulus aspects it represents. A related challenge is storing
information and capturing regularities at diVerent scales ranging from very
specific (e.g., Jim’s dog Fido) to very broad (e.g, living things). To address
these issues, clusters need to fine tune their level of specificity to satisfy the
goal measure. As in the case of adjusting attention at the individual cluster
level, adjusting specificity at the individual cluster level allows for diVerent
criteria to be applied to diVerent parts of the stimulus space, as in multiple
systems models.

The model that is introduced in the next section, CLUSTer Error Reduc-
tion (CLUSTER), meets these stated challenges. CLUSTER incorporates a
formal goal measure that directs cluster development. CLUSTER has suY-
cient flexibility to evolve conceptual structures (i.e., clusters) that reflect key
aspects of human knowledge representation. After introducing the model,
a supportive simulation will be discussed. The simulation illustrates how
CLUSTER can evolve cluster organizations that serve the functions of
multiple systems. Importantly, CLUSTER does not posit a separate rule
system and maintains key aspects of the training examples that allow it to
capture human performance. Finally, we will consider how CLUSTER is
consistent with cognitive neuroscience findings advocating multiple memory
systems, and briefly discuss work that is being done to further develop and
verify the model. The mathematical details of the model are presented in
Love and Jones (2006).

B. OVERVIEW OF CLUSTER

CLUSTER is an autoassociative model of human category learning in which
the ‘‘hidden’’ layer consists of clusters (see Fig. 1). A cluster is a bundle of
related features. A presented stimulus activates the existing clusters, which
pass their activation to the output layer via connection weights. Like other
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autoassociative models (e.g., Kurtz, 2007), CLUSTER attempts to replicate
the input layer at the output layer and in the process develops internal
representations that seize on key regularities.

CLUSTER diVers from other autoassociative models in a critical way. The
error term CLUSTER minimizes and does not uniformly weight reconstruc-
tion error equally across features Au1. Instead, each feature’s error is weighted
according to its goal relevance. For example, pure classification learning
places all the error term weighting on the category label features and error

H
ei
gh
t

Width

A

A

B

Stimulus

Clusters

A or B?

Category A

Width Height A B

Decision
procedure

Fig. 1. CLUSTER is an autoassociative learning model in which the hidden layer consists of
clusters that adjust their position, attention, and association weights to minimize an error term

that reflects the learner’s goals. In the illustrated example, three clusters have been recruited and

the model is being asked to infer the category label. The diVerent shape of each cluster indicates
its unique attention profile. The thickness of the links from each cluster to the output layer reflect

the strength of the association weights. The input layer, which mirrors the output layer, is not

shown. Instead, each cluster’s position is shown geometrically for the width and height dimen-

sions. Category dimensions are indicated by the labels A and B.

174 Bradley C. Love et al.



Comp. by: RMervin Date:27/2/08 Time:15:34:46 Stage:First Proof File Path://
pchns1301/WOMAT/Production/PRODENV/0000000001/0000007779/
0000000016/0000772317.3D Proof by: QC by: ProjectAcronym:bs:PLM
Volume:00005

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

associated with reconstructed perceptual features is disregarded (as in most
category learning models). At the other extreme, pure unsupervised learning
weights the reconstruction error uniformly across features (as in most auto-
associative models). CLUSTER can capture every conceivable case in
between these extremes, which is critical as the extremes are likely caricatures
that do not correspond to human learning (e.g., people incidentally learn
about feature correlations in classification learning and place more impor-
tance on predicting certain features in unsupervised learning).

The error term (with goal weights on each feature) reflects the discrepancy
between what CLUSTER predicts and what is observed. Importantly, dis-
crepancies for features that are goal‐relevant are weighted more highly and,
therefore, have more influence on learning. To satisfy this goal, clusters
adjust their position, attention, and weights to minimize the error term
through gradient descent learning. Thus, depending on the goal weights,
diVerent cluster organizations will emerge. Unlike most models, each cluster
can adjust its own attention to minimize error and attention does not sum to
a fixed number (i.e., clusters can vary in overall attention or specificity).
These changes allow additional flexibility for clusters to emphasize diVerent
features and to vary in specificity (e.g., a specific dog vs. dogs in general).
Although in Fig. 1 grouping of features implies dimensional structure,
CLUSTER departs from the majority of models that utilize selective atten-
tion mechanisms (e.g., Nosofsky, 1986) in that it does not assume a dimen-
sional structure. Not assuming dimensional structure allows for additional
flexibility (e.g., the presence or absence of red can be critical to a cluster,
whereas the presence or absence of blue can be somewhat irrelevant).1

CLUSTER begins with one cluster centered on the first training example,
and recruits additional clusters when the existing clusters are not supportive
of the current goal. Each newly recruited cluster is centered on the current
stimulus. Like CLUSTER’s other operations, the algorithm for cluster
recruitment is consistent across all induction tasks (there are no special
cases). Despite its consistency across situations, CLUSTER retains the
flexibility to build representations that capture many of the competencies
of human learners without proposing distinct learning systems. CLUSTER is
highly principled (all of its operations are tied to the goal‐weighted error
term), but minimal structure is built into the model. Instead, CLUSTER
evolves the knowledge structures needed to solve the current task.

1 Interestingly, in cases in which contrasts are consistent (e.g., when red is present, blue is
absent, and vice versa), CLUSTER attends equally to the contrasting features within each cluster.

Thus, CLUSTER may prove to provide some insight into how dimensional structure arises.
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C. ILLUSTRATIVE SIMULATION

Findings from previous studies exploring rule‐plus‐exception learning have
been problematic for exemplar models and have been used to support multi-
ple systems models, like the RULEX model of category learning (Nosofsky,
Palmeri, & McKinley, 1994). RULEX proposes that rule‐following items are
captured by a rule system whereas exception items reside in an exemplar
store. Interestingly, both SUSTAIN and CLUSTER can account for such
findings (e.g., Palmeri & Nosofsky, 1995). Such fits alone cast doubt on the
necessity of rule systems. Here, we go farther and present more challenging
findings that establish that human rule‐plus‐exception learning is inconsis-
tent with rule‐plus‐exception models, but does follow from CLUSTER.
We demonstrate that CLUSTER can accommodate such findings by apply-
ing diVerent procedures to diVerent parts of the stimulus space and in fact
provides an account superior to RULEX’s.

To test between this dual route account (i.e., rules and exceptions) and a
clustering account, Sakamoto and Love (2004) revisited the rule‐plus‐excep-
tion design with the twist that one rule was twice as frequent as the other.
Subjects sequentially classified stimulus items into categories A and B and
received corrective feedback. Each category was defined by a rule (e.g.,
if large, then A; if small, then B). Additionally, each category contained an
exception (e.g., a small member of A; a large member of B). Table I provides
the design details of Sakamoto and Love’s variation in which one experi-
enced category had twice as many rule‐following items as the contrasting
category. Because subjects reason from stimulus dimensions to categories in
classification learning, the exception in the smaller category violates the more
frequent rule in Table I (i.e., if value 1 on the first stimulus dimension, then A).
Following learning, recognition memory was assessed. In contrast to
RULEX’s predictions (across all explored parameter values), the exception
violating the more frequent rule was better remembered than the exception
violating the less frequent rule (see Fig. 2). This result is surprising given that
the ‘‘rules’’ during learning were cued on the screen and that subjects
reported internally rehearsing these rules. The fact that the item violating
the more salient or frequent rule was remembered better than the other
exception is evidence that the mental substrate of rule‐plus‐exception
learning does not consist of separate rule and exception routes.

CLUSTER was applied to the data to illustrate its ability to ‘‘evolve’’
multiple systems. Each stimulus dimension shown in Table I and category
membership were represented by 2 features for a total of 12 features.
In contrast to RULEX (which requires eight parameters to CLUSTER’s
seven for the simulation), multiple sets of parameters replicated the basic
pattern of results, indicating that these findings follow from CLUSTER’s
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basic operation and that additional work is necessary to establish default
parameters for CLUSTER. These and other model evaluation issues, such as
consideration of nested models within CLUSTER’s formalism, are topics cur-
rently being intensely pursued, but are set aside here in favor of demonstrating
CLUSTER’s promise to evolve multiple learning systems. Here, we focus on
the results and rationale, rather than the details of the simulations. Readers
interested in the details of the simulations are directed toLove and Jones (2006).

Using these parameters, CLUSTER was simulated 10,000 times, adopting
methods paralleling the human study (e.g., 10 blocks of training) and the
results were averaged. CLUSTER correctly predicts that the exceptions are
recognized best with the exception from the small category recognized better
(.88 vs. .80) than the exception from the large category. Rule items from the
small and large categories are recognized at similar rates (.58 vs. .59, respec-
tively). In summary, CLUSTER’s predictions matched the basic pattern
observed in human subjects (see Fig. 2).

TABLE I

THE ABSTRACT STIMULUS STRUCTURE FOR SAKAMOTO AND LOVE’S (2004)
EXPERIMENT 1 IS SHOWN

Learning items Dimension values Novel items Dimension values

Category A

! A1 21112 N1 11221

A2 12122 N2 12112
A3 11211 N3 12221

A4 12211 N4 12212

A5 11122 N5 12222

A6 12111 N6 21221
A7 11222 N7 22112

A8 11212 N8 22221

A9 12121 N9 22212

Category B N10 22222
! B1 11121

B2 22122

B3 21211
B4 22211

B5 21122

Items A1 and B1 (indicated by the arrows) violate the imperfect rule of the first stimulus dimension.

subjects completed 10 training blocks where each block consisted of each item below presented in a random

order. Following learning, items A1–5 and B1–5 were paired with all combinations of novel foils that matched

on the first dimension in forced choice recognition. The actual stimuli were simple geometric figures. for

example, for some subjects the first dimension was size with a 1 indicating a small figure and 2 indicating a

large figure.
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CLUSTER recruited 11.4 clusters on average (the median was 11) to
represent the 14 training items. The number of clusters recruited followed
a normal distribution with solutions ranging from 4 to 23 clusters with a
standard deviation of 2.3. Every solution examined involved devoting at least
one cluster to encoding each exception with many simulations devoting
multiple clusters to each exception. Because CLUSTER is a distributed
model and its predictions for an item depend on the responses of all clusters,
an analysis of the four item types was conducted that factored in all clusters.

One explanation for CLUSTER’s ability to accommodate the results is
that it increased attention for clusters playing prominent roles in coding
the exceptions, particularly for nonrule stimulus features. Encoding these
items at a diVerent specificity than rule‐following items would help reduce
confusions between these items and rule‐following items, resulting in both
reduced error during training and in enhanced recognition for exceptions.
The pressure to enhance attention should be greatest for the exception
violating the more frequent rule as every rule‐following item from the con-
trasting category provides an impetus to enhance attention. This process is
illustrated and explained in greater detail in Fig. 3.

Fig. 2. Mean accuracies in the recognition phase of Sakamoto and Love’s (2004)

Experiment 1 are shown alongwith 95%within‐subjects confidence intervals (see Loftus&Masson,

1994 Au16). Exc S are the exception of the small category, Exc L are the exception of the large category,

Rul S are the rule‐following items of the small category, andRulL are the rule‐following items of the
large category.
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To evaluate this explanation, following training, study items were pre-
sented to CLUSTER and a weighted sum of attention to nonrule features
was calculated by multiplying each cluster’s sum of attention for nonrule
features by its activation. Then, these products were summed and normalized
by dividing by the sum of all cluster activations. The results for items of the
same type were averaged. The mean results for the four item types (averaged
over 10,000 simulations) are 1.36, 1.32, 1.28, and 1.29 for exceptions from the

Early in learning:

Later in learning:

Opposing rule

Opposing rule

Exception

Exception

Opposing rule

Opposing rule

Fig. 3. Better recognition of exceptions in CLUSTER is driven by two factors. The first factor

(shown in the top panel) is that exception items elicit surprise and are subsequently encoded by

their own recruited cluster. In contrast, clusters responding to rule‐following items tend to
encode for multiple items, which leads to the loss of some item individuating information that

in turn reduces later item recognition. The second factor is that the tuning or specificity of

exception‐encoding clusters tends to become peaked in order to reduce confusion with rule‐
following items from the opposing category. This process is illustrated in the bottom panel.

Every time a cluster encoding a rule‐following item from the contrasting category is activated,

the cluster encoding the exception from the opposing category is inappropriately activated as

this cluster tends to be similar to rule‐following items from the contrasting category but votes
for the opposite response. This inappropriate activation of the exception cluster leads to error

and the tuning of the exception cluster increases to reduce this error by limited generalization

or coactivation. Increasing the exception cluster’s tuning boosts recognition of that exception

item. This process is more pronounced for exception clusters that are more confusable with
rule‐following items from the contrasting category because of either the numerosity of these rule‐
following items (e.g., Sakamoto & Love, 2004) or because of their high similarity to the exception

cluster (e.g., Sakamoto & Love, 2006). Both of these findings are inconsistent with rule‐based
accounts of rule‐plus‐exception learning.
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small category, exceptions from the large category, rule items from the small
category, and rule items from the large category, respectively. As predicted,
these sums perfectly track item recognition. Exceptions (particularly the
exception violating the more frequent rule) were stored as ‘‘hot spots’’ of
focused activity, whereas clusters coding for rule items were more broadly
tuned and were less apt to code item specific diVerences. Distinct representa-
tions emerge for the item types.

CLUSTER provides a similar account of related data sets in which excep-
tion memory was manipulated by varying the similarity between exception
types and contrasting rule items instead of manipulating rule token frequency
(Sakamoto & Love, 2006). SUSTAIN cannot account for these data. The
Sakamoto and Love (2006) studies demonstrate that enhanced recognition of
exceptions violating frequent rules is not due to frequency per se. Instead,
increased confusions in memory enhance exception encoding (see Fig. 3).
Sakamoto and Love (2006) equated the frequency of each rule and instead
varied how similar rule‐following items were to the exception from the
opposing category. The more similar the exception, the more the specificity
of the exception increased to oVset confusions with rule‐following items from
the contrasting category. This enhancement boosted recognition. These
results provide further support that one learning system underlies rule‐plus‐
exception learning, and that there is not a separate rule system governing
performance.

D. DISCUSSION

Human learners display flexibility in how they represent category informa-
tion that outstrips the capacities of traditional single system models.
In response, the field has developed multiple system models that are them-
selves not without problems. These multiple system models often contain a
separate rule system. One such model, RULEX, could not account for the
results presented here despite its complexity. Here, we pursue a theoretical
approach that diverges from straightforward single system models and
multiple system models—knowledge structures evolve as needed to satisfy
the learner’s goals.

CLUSTER embodies this third position. CLUSTERhas a formally defined
notion of goal that spans induction tasks, recruits clusters when existing
clusters fail to support the learner’s goals, and adjusts clusters’ positions,
attention, and association weights to reduce goal mismatch. These operations
are suYcient to apply diVerent procedures to diVerent parts of the stimulus
space, as multiple systems models do.

How do we reconcile our position with impressive evidence from cognitive
neuroscience that multiple systems underlie human category learning
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performance? We do not deny that multiple learning systems underlie human
category learning. A nonexhaustive list of systems includes a dopaminergic
procedural learning system, a working memory system engaging cortical–
thalamic loops, and a PFC‐hippocampal‐perirhinal learning system. The last
system is marked by its flexibility and is adept at creating new conjunctive
representations that link features (i.e., clusters). SUSTAIN (the precursor to
CLUSTER) is readily put in correspondence with this learning circuit and
has successfully simulated populations with hippocampal deficits by reducing
the model’s ability to form new clusters (Love &Gureckis, 2007). CLUSTER
likely corresponds to the hippocampal system as well. We believe that a fast
learning hippocampal system is shadowing the other learning systems. For
instance, the literature is replete (including Sakamoto & Love, 2004) with
cases in which learners are clearly applying a rule stored in working memory,
but are nevertheless storing additional information about rule‐following
examples. Critically, we believe our empirical studies and simulations dem-
onstrate that positing multiple systems is not enough in itself to explain
human behavior. We believe that at least one of the systems posited must
have the ability to build new representations flexibly in response to a learner’s
goals, like CLUSTER does.

The proposal that CLUSTER relates to a learning circuit involving the
hippocampus is consistent with our position that experienced examples exert
an influence on performance following learning, as opposed to experienced
examples being completely abstracted away by a rule representation. The
hippocampal memory system is closely tied to episodic memory, which
requires memory for experienced examples. Love and Gureckis’s (2007)
account of CLUSTER and the hippocampal system posits that every seman-
tic memory begins as an episodic memory (surprising events are stored as
separate clusters). Although recruited clusters can be activated and modified
by subsequent events, in many cases clusters will retain some information
about the original episode.

Of course, much work remains to be done. EVorts are underway to apply
CLUSTER to all the studies to which SUSTAIN has been applied. The
results so far are promising. Additionally, we are applying CLUSTER to
studies exploring how people partition knowledge and appear to apply diVer-
ent procedures depending on context (e.g., Yang & Lewandowsky, 2004).
Finally, CLUSTER has been successfully applied to Kruschke’s (1993)
filtration and condensation tasks that were intended to demonstrate the
necessity of dimensional attention (CLUSTER has cluster and feature‐
specific attention). Although CLUSTER does not have a built in notion of
dimensional attention, dimensional attention emerges (i.e., there is advantage
for aligning all clusters along the same contrasting features) much like how
what looks like multiple learning systems emerges out of the Sakamoto and
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Love (2004) simulations. While CLUSTER itself is still evolving, it appears it
has the necessary constraints built in to account for human learning and no
more. CLUSTER demonstrates that learning can be both intimately tied
to the specifics of the training examples (in terms of presentation order,
numerosity, similarity relations, etc.) and display the kinds of flexibility
that human learners show. This flexibility outstrips multiple system models
consisting of separate rule systems.

III. Learning Abstract Rules from Examples

The previous section suggested that people do not use mental rules to capture
rule‐like regularities defined over stimulus features. This section makes a
bolder claim. Here, we claim that similar mechanisms rooted in concrete
examples can explain our ability to acquire and apply seemingly abstract
rules or concepts. Abstract rules are not defined over any particular set of
stimulus properties. In the introduction, the concepts same and diVerent were
provided as examples of abstract rules. To provide another example,
Chomsky (1957) described the rules of language as being abstract in nature.
According to Chomsky, transformative and generative rules govern whether
a sentence is grammatical. On this view, the set of grammatical sentences in a
language is infinite and no specific set of features (e.g., ‘‘The’’ appears before
‘‘boy’’) can be used to classify sentences as grammatical or ungrammatical.
The diYculty in imagining how such a complex and abstract concept could
be acquired is one of the motivating pillars of the nativist position.

In this section, we argue that humans can learn seemingly abstract
concepts by making analogy to concrete exemplars. Our view predicts that
abstract concepts should display a family resemblance structure (cf. Rosch &
Mervis, 1975) determined by similarity to stored exemplars. Evidence of such
similarity eVects would suggest a concrete basis to abstract concepts.
To support our conjecture, we present an exemplar model of category
learning that can learn seemingly abstract concepts by analogy to stored
exemplars. To foreshadow our simulation results, the model, Building
Relations through Instance Driven Gradient Error Shifting (BRIDGES),
accounts for the acquisition of seemingly abstract concepts and correctly
predicts that these concepts have a family resemblance structure rooted in
experienced examples.

Exemplar models of category learning hold that all abstraction or general-
ization occurs through similarity‐based activations of concrete examples. In
contrast, CLUSTER formed abstractions directly in memory in the form of
clusters. We will consider the relationship between CLUSTER and
BRIDGES in the General Discussion. In exemplar models like BRIDGES,
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each experienced instance is stored in memory. When a new item is encoun-
tered, the similarity between the item and each exemplar in memory is
calculated. The stimulus is predicted to belong to the category with the
greatest sum of pairwise similarity (Medin & SchaVer, 1978). Thus, exemplar
models clearly link experienced events to later generalization.

BRIDGES is derived from ALCOVE (Kruschke, 1992), a connectionist‐
based exemplar model of classification. ALCOVE learns to weight diVerent
aspects of the exemplars diVerently when calculating similarity. Through a
process of trial‐by‐trial backpropagation of error, when computing the simi-
larity between stimuli and exemplars, ALCOVE learns to ignore those
aspects of the stimuli that are not predictive of correct classification.
ALCOVE learns to generalize over the irrelevant features. When first
learning about mammals, fur, or giving birth to live young might be consid-
ered important, but with enough experience possession of a mammary gland
will become the sole predictor of category membership. Thus, ALCOVE
can exhibit abstract behavior. However, ALCOVE, like many models of
learning, is limited to only learning regularities over features.

BRIDGES generalizes ALCOVE by extending the notion of attention
shifting and similarity to include relational match. The model supports the
notion that analogy to stored experiences and attention shifting are the only
attributes required of a model to appreciate abstract relationships. Further-
more, by incorporating ALCOVE’s attentional shifting mechanisms into
BRIDGES, we forward an explanation of how perceived similarity can change
over the course of learning as more predictive stimulus properties are accen-
tuated. Such attentional shifts will prove useful in demonstrating how seem-
ingly abstract understandings can arise from analogies to concrete experiences.

Numerous accounts of how people detect and grade these analogical
similarities exist (CAB, Larkey, & Love, 2003; LISA, Au2Hummel, & Holyoak,
1997; SME, Falkenhainer, Forbus, & Gentner, 1989). Most approaches
assume that an analogy is a mapping from items in one domain to items in
another domain (Gentner, 1983). The diVerences between the various models
occur in how the domains are represented and exactly how the mapping
process progresses. Although we illustrate BRIDGES using a variation of the
theory behind the Structure‐Mapping Engine (SME), other methods for
detecting analogical fit could have instead been implemented. In fact,
BRIDGES is readily implemented using radically diVerent match proce-
dures, such as transformation approaches. The transformation account
holds that one analog is transformed into the other over a series of steps
until they match (Hahn, Chater, & Richardson, 2003). The fewer the steps
and the smaller their cost, the higher the resulting similarity is. Learning
would progress in much the same way with attention shifting to more
predictive transformations.
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Structure mapping holds that people encode stimuli (e.g., objects, scenes,
events) in terms of predicate representations that capture relations among
entities (e.g., Revolves(planets,sun)). Relations can serve as arguments to other
relations (e.g., Causes(GreaterMass(sun,planets), Revolves(planets,sun))).
Structure mapping posits that people align structured representations to
find the most satisfying correspondences. Satisfying correspondences are
those that map elements playing identical roles in corresponding relations.
Higher‐order relations (i.e., relations serving as arguments to other relations)
can serve to disambiguate and strengthen candidate mappings between
analogs. In the solar system/atom example, an analogical sounds alignment
places the sun in correspondence with the nucleus and the planets in corre-
spondence with the electrons. Sounder mappings lead to increased perceived
similarity (Gentner & Markman, 1997).

A. ABSTRACTION THROUGH ATTENTION SHIFTING

By bridging the work from analogy to category learning, the BRIDGES
model is able to demonstrate relational abstraction by extending the tradi-
tional definition of similarity used in category learning to make use of
analogical alignment. For any given comparison between a stimulus and a
stored exemplar, BRIDGES considers all of the possible one‐to‐one map-
pings between the stimulus and each exemplar.2 For each exemplar, similarity
is determined according to a diVerence measure that incorporates notions
of featural and relational mismatch (see Fig. 4). A relational mismatch of 1
occurs when a relation does not exhibit parallel connectivity3 (i.e. the mapped
entities play diVerent roles in their respective relations, see the right panel
of Fig. 4). A featural mismatch of 1 occurs when nonidentical entities or
entities containing mismatching features are mapped to one another (see the
right panel of Fig. 4). As Fig. 4 illustrates how these two measures can be
at odds.

Both types of mismatch are weighted by attention weights and the sum of
these attention weighted mismatches yields an overall diVerences measure
that is inversely proportional to similarity. The mapping that maximizes
similarity (i.e., minimizes attention weighted diVerence) is chosen. These
exemplar similarity values serve as exemplar unit activations and are passed
across association weights to category units (e.g., predator and prey).

2 Models of analogical alignment avoid this exhaustive search by using heuristics to guide the

mapping process. BRIDGES could be extended to incorporate these shortcuts, but instead we

focus on the basic ideas underlying BRIDGES.
3 Systematicity has been left out as a constraint because it falls out as a natural consequence of

parallel connectivity (Larkey & Love, 2003).
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The stimulus tends to be classified into the category whose unit has the
greatest activation.

After feedback is provided, attention weights and association weights
between exemplars and category units are adjusted to reduce error. Changes
in attentional weights can lead to diVerent future mappings. When attention
shifts away from features and toward relations, parallel connectivity (i.e.,
analogical match) is stressed over featural similarity and BRIDGES demon-
strates abstract understanding of a domain. Conversely, when featural
matches lead to successful predictions, attention shifts toward features and
BRIDGES is governed by featural similarity. When relational information is
not discriminative or present, BRIDGES reduces to the standard ALCOVE
model. A complete formalism for BRIDGES can be viewed in Tomlinson
and Love (2006).

B. RELATIONS WITHOUT RULES

Marcus, Vijayan, Bandi Rao, & Vishton (1999) found that infants could
discriminate between abstract patterns or grammars of speech sounds.
Importantly, this discrimination could not be accomplished by any weighting
of phonetic features. Because featural regularities could not be leveraged
to discriminate between grammars, Marcus et al. proposed that infants
utilized variable binding in conjunction with algebraic rules to master such
learning tasks.

We posit, based on evidence provided by BRIDGES, that infants do not
use algebraic rules. Instead, the rule‐like behavior arises from a comparison
process between stimuli and previous exemplars coupled with a learned
attention shift away from the concrete features of the stimuli to the relations
within the stimuli.

Attention on relation
preserves parallel connectivity

Attention on features
preserves featural match

Left_of(     ,    ) map Left_of(    ,     ) Left_of(     ,    ) map Left_of(    ,     )

Fig. 4. There are two possible ways to map the elements in these corresponding relations. The

example on the left preserves parallel connectivity by mapping elements that play the same role in

each relation to one another. This solution is high in relational match, but low in featural match
because the corresponding elements diVer in shape features. The situation is reversed in the

mapping shown in the right example. Attention weighting of mismatches determines which of

these two possible mappings will be preferred by BRIDGES. BRIDGES chooses the mapping

that minimizes attention‐weighted mismatch.
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In Marcus et al. (1999), 7‐month‐old infants were exposed to sentences
that followed either an AAB pattern or an ABB pattern. The sentences were
made up of simple monosyllable sounds (words) such as ‘‘GA TI TI.’’ After
training on one of the patterns, the infants were tested with novel phonemes
following the same patter or the opposite pattern (e.g., ‘‘BA BA GU’’). The
researchers found that 15 of the 16 infants were able to distinguish between
the two grammars using novel phonemes.

BRIDGES was fit to the study. Each sentence (e.g., ‘‘GA TI TI’’) was
represented as an exemplar. BRIDGES’s exemplar representation for
‘‘GA TI TI’’ is shown in Table II. Each syllable is represented as an entity
involved in a type‐token relation with an abstract representation of the type.
Each syllable’s position in the speech stream is encoded by a positional
feature. These syllables have a number of phonetic features that are not
represented in these simulations. Not including such features follows Marcus
et al.’s presumption that no significant regularities exist across these features.
Importantly, including uncorrelated features does not alter the pattern of our
simulation results.

Critically, relational information was included in BRIDGES’s representa-
tions. BRIDGES makes a distinction between tokens and types. In eVect, we
assume that infants have developed categories of speech sounds (Eimas,
Siqueland, Jusczyk, & Vigorito, 1971). These type relations allow for abstract
patterns to be uncovered through analogy to stored exemplars as one type of
sound can be mapped to another.

Following Love et al. (2004), unsupervised learning was modeled by a
network consisting of a single category output unit with a target value of 1
for all stimuli. In eVect, this category unit is a familiarity detector. Associa-
tion and attention weights in the model were learned which uncovered the
underlying regularities across the sentences to yield consistently high famil-
iarity (i.e., high output values for the category unit).

During habituation, the 16 unique sentences were presented three times
each to BRIDGES and stored as exemplars. On each presentation, associa-
tion and attention weights were updated. Though not critical, we assumed

TABLE II

BRIDGES’S REPRESENTATION OF ‘‘GA TI TI’’

Entities Features Relations

GA1 Position (GA1) ¼ 1 Type of (GA1, GA)

TI1 Position (TI1) ¼ 2 Type of (TI1, TI)
TI2 Position (TI2) ¼ 3 Type of (TI2, TI)
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that the saliency of positional features is suYciently great to constrain the
mapping process (i.e., words in sentences align temporally). Besides position
(which does not discriminate between grammars), no regularities across
features or entities existed. However, parallel connectivity was perfect for
members of the same grammar. For instance, ‘‘GA TI TI’’ is isomorphic to
‘‘LI NANA’’ in that all token and types in the type relation (see Table II) can
be mapped to one another and preserve parallel connectivity. This degree of
perfect match caused BRIDGES to shift attention to the type relation. This
shift makes BRIDGES sensitive to the underlying grammar and immune to
changes of the phonemes, rendering novel sentences following the original
grammar somewhat familiar. Sentences not following the learned grammar
can be mapped to the stored exemplars, but parallel connectivity is violated
making these items less familiar and resulting in greater looking time as
infants dishabituate.

BRIDGES was able to learn to discriminate between abstract patterns on
the basis of analogical similarity. Storing concrete exemplars, shifting atten-
tion, and analogical matching are suYcient to show generalization to novel
items. BRIDGES’s success calls into question Marcus et al.’s (1999) claim
that algebraic rules underlie infant performance. However, BRIDGES’s
success is attributable to its ability to bind arguments to relations, which is
consistent Marcus et al.’s claim that infants bind variables.

Marcus (1999) has criticized other accounts (Seidenberg & Elman, 1999) of
these results for including a same/diVerent detector. The BRIDGES simula-
tions do not explicitly label speech sounds as identical, rather the model
assumes that infants can categorize speech sounds, as embodied by the type/
token distinction. BRIDGES’s solution does not hinge on a same detector.
In fact, the patterns that can be discriminated by analogical mapping (even in
simple domains in which only the type relation is present) are more encom-
passing than the concepts same and diVerent. The analogical mapping pro-
cess in these simulations aligned the current stimulus to stored exemplars—
BRIDGES did not label words within sentences as same or diVerent nor did
it shift attention to a same feature. Abstract responding arose through
analogy to stored exemplars and attention shifting from concrete features
to relations.

C. GRADED RESPONSES AS SIMILARITY

One of the key assumptions of BRIDGES is that the basis for understanding
abstract relations is similarity based and therefore inherently graded. The
design of theMarcus et al. study did not allow for assessment of this possibility
because stimuli were either grammatical or ungrammatical. According to
BRIDGES, learners can both respond abstractly (i.e., generalize to featurally
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novel stimuli) and show evidence for the influence of past examples. If
BRIDGES is correct, category membership in relationally defined categories
is graded as it is in natural categories (Rosch & Mervis, 1975).

To evaluate BRIDGES’s predictions, we will consider results from a series
of studies exploring how pigeons and humans learn notions of same and
diVerent. To illustrate how BRIDGES learns the concepts same and diVerent,
we applied BRIDGES toYoung andWasserman’s (1997) study demonstrating
that pigeons can learn to discriminate between arrays of same and diVerent
icons. To foreshadow, Young and Wasserman’s results indicate that pigeons
can master a notion of same and diVerent that cannot be explained by
featural similarity. At the same time, the pigeons are sensitive to the particu-
lar examples they experienced during training and display a graded notion of
same and diVerent. Although fascinating, it would be easy to dismiss these
results as relevant to pigeon cognition, but not human cognition. However,
later work found the same pattern of performance with human subjects
(Castro, Young, & Wasserman, 2006; Young & Wasserman, 2001). Humans
as a group are slightly more deterministic than pigeons, but this group
diVerence is within the range of individual diVerences. The bottom and top
20% of humans clearly bracket the mean performance of pigeons.

In Young andWasserman (1997), pigeons learned to respond diVerentially
to displays containing 16 identical and 16 diVerent icons. On each trial, the 16
icons were randomly placed within a 5 " 5 grid. The pigeons were reinforced
for pushing a green button when presented with a same stimulus and a red
button when presented with a diVerent stimulus. Training consisted of blocks
of 16 same stimuli and 16 diVerent stimuli in a random order. An identical set
of icons was used to form stimuli for both the same and diVerent items,
making it impossible to correctly associate an icon or icon feature with a
response. The pigeons were trained until 80% accuracy and then tested.

The test phase consisted of intermediate stimuli that were somewhat similar
to both the same and diVerent stimuli experienced in the training phase.
Some examples of the intermediate stimuli are shown in Fig. 5. These stimuli
can be viewed as forming a continuum between the pure same stimuli (all 16
icons identical) and the pure diVerent stimuli (all 16 icons diVerent) used
during the training phase. The pigeon’s performance in these intermediate
conditions, as well as BRIDGES’s predictions, is shown in Fig. 6.

Like the Marcus et al. (1999) simulations, we adopted a minimal approach
to stimulus representation in fitting the BRIDGES model. Each stimulus’s
icon was represented as an entity. Each of the 16 entities participated in a
type relation as in the Marcus et al. simulations (see Table II).

Through training BRIDGES discovered analogical mappings among pre-
sented stimuli and exemplars stored in memory that correctly predicted the
label for the training stimuli. For example, consider aligning a stimulus
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containing 16 squares to another stimulus containing 16 triangles. Each
triangle entity is put into correspondence with a square entity. This results
in a perfect feature mismatch, but parallel connectivity is preserved. Within
each type relation, the type triangle maps to the type square. This alignment
leads to attention shifting toward the type relation and away from the
entities. In contrast, only 1 out of 16 type relations will exhibit parallel
connectivity when aligning a diVerent stimulus with a same stimulus. Thus,
it is straightforward for BRIDGES to discriminate between same and

Fig. 5. Pigeons were trained on pure same or diVerent stimuli like those shown on the far left
and far right. At test, intermediate cases between pure same and diVerent stimuli were shown like

the middle two stimuli.
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Fig. 6. The results from Young andWasserman’s (1997) studies and BRIDGES’s predictions

are shown. The 11 intermediate conditions form a continuum between pure same and pure

diVerent stimuli. Figure 5 provides two examples of such intermediate cases. Detailed descrip-
tions of these intermediate can be found in Young and Wasserman (1997).
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diVerent stimuli in the absence of featural support, by learning to pay
attention to the number of type relations that match between the stimuli.

BRIDGES used the same similarity measure with the intermediate stimuli
during testing. For example, the second stimulus from the right in Fig. 5
would result in 7 of 16 (seven identical icons) relational matches to each same
exemplar and 4 of 16 (four distinct icon types) relational matches to each
diVerent exemplar. Similarity‐based activations are not all or none and these
intermediate cases activate stored examplars to varying degrees, leading to
gradation in response. This gradation of response almost exactly matches the
responding of the pigeons to the intermediate stimuli (R

2 ¼ .95).
This simulation demonstrates how abstract concepts can be acquired

through storage and analogy to concrete examples. BRIDGES’s excellent
fit of the intermediate conditions is a natural consequence of similarity‐based
processing. Like natural categories, BRIDGES predicts that relational cate-
gories have a graded structure.

D. DISCUSSION

By combining insights from the category learning and analogy literatures,
BRIDGES provides an account of how people and animals can gain abstract
understandings of domains based solely on experience with concrete instan-
ces. BRIDGES’s power arises from using a notion of similarity informed by
work in both analogy and category learning. Structural alignment processes
allow BRIDGES to appreciate analogical similarities, while attention shift-
ing modifies BRIDGES notion of similarity over the course of learning.
Integrating these mechanisms allows BRIDGES to grasp abstract patterns
by shifting attention to relations which drive the alignment process.

In the supportive simulations, BRIDGES oVered an explanation of how
infants become sensitive to abstract grammars and how people and pigeons
develop the concepts of same and diVerent irrespective of a stimulus’s fea-
tures. BRIDGES’s exemplar‐based representation of experienced examples
and trial‐by‐trial error‐driven learning were suYcient to capture seemingly
abstract concepts. Consistent with the stance that abstract concepts are
similarity based, the relational concepts same and diVerent display graded
membership like natural categories.

BRIDGES is not the first model to use analogical alignment to support
category learning. SEQL can acquire category structures through a process
of repeated abstraction of a structured category representation and has been
successfully applied to the infant grammar learning studies considered here
(Kuehne, Gentner, & Forbus, 2003). While SEQL stresses building abstract
representations, abstraction in BRIDGES arises from shifting attention.
Some relative strengths of BRIDGES are that it extends an existing model
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of category learning (ALCOVE is a special case of BRIDGES) and incorpo-
rates attentional mechanisms.

One challenge for BRIDGES is incorporating new relational information
into its exemplar representations. Although BRIDGES can learn relational
concepts, BRIDGES is not yet able to incorporate acquired relations directly
into its exemplar representations (see Doumas & Hummel, 2005, for an
example of a predicate discovery system).

IV. Learning to Reason About Rewards in Dynamic Environments

The previous examples demonstrate how abstract rule‐like behavior may be
rooted in concrete experience. As a final example, we examine how people
learn to control a dynamic system that continually evolves in response to
their ongoing interaction. Like the categorization studies reviewed above,
these experiments and simulations emphasize the way people learn (what
appear to be) abstract rules that help them achieve their current goal.
However, like our previous simulations, we will show how this rule‐like
behavior may emerge, not from abstract reasoning processes, but through
simple trial‐by‐trial updates of concrete task representations.

A. LEARNING IN DYNAMIC TASKS

Flexible adaptation to our environment requires us to learn in a variety of
ways. Fortunately, a teacher is often times available to provide us with
corrective feedback or instruction (i.e., supervised learning). However, in
other situations we must discover for ourselves the relevant contingencies
in the world through trial and error. For example, many video games require
players to discover sequences of actions that allow them to advance to a new
level through trial‐and‐error learning. In a set of recent studies (Gureckis &
Love, xxxx Au3a,b), we have examined how people discover response strategies
that maximize their long‐term benefit in an interactive task environment
where the structure of rewards continually change in response to the actions
of the individual (see Berry & Broadbent, 1988, or Stanley, Mathew, Russ, &
Kotler-Cope, 1989, for a similar approach).

In our task (called the ‘‘Farming onMars’’ task), subjects are given a cover
story about controlling two fictitious farming robots on a distant planet in
order to generate oxygen for future human inhabitants. On each trial, sub-
jects are asked to make repeated choices between these two alternatives
(i.e., robots) with the goal of maximizing the rewards (i.e., oxygen) they
receive over the entire experiment. On any given trial, one robot always
generated more oxygen than the other. However, each time the subject selects
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this more attractive alternative, the long‐range expected utility of both robots
is lowered on the following trial. Thus, the strategy which provides the most
reward over the entire experiment is to choose what appears to be the
immediately inferior robot on every trial. Critically, the nature of this con-
tingency is only revealed to subjects through their ongoing interaction with
the system (i.e., responses and associated rewards) and subjects must learn
for themselves how to maximize their earnings.

The conflict between short‐ and long‐term rewards in our task is relevant
to many realworld decision making situations. For example, drug addicts are
often unable to overcome the desire for an immediate high despite the long‐
term consequences to their health. Interestingly, a number of studies that
have examined choice behavior in tasks where short‐ and long‐term rewards
conflict have found that both humans and other animals often fail to inhibit
the tendency to select an initially attractive option even when doing so leads
to lower rates of reinforcement overall, a phenomena referred to as meliora-
tion (Herrnstein, 1991; Herrnstein & Prelec, 1991; Neth, Sims, & Gray, 2006;
Tunney & Shanks, 2002). This pattern of results appears at odds with
rational accounts, which dictate that decision makers follow a strategy that
maximizes their long‐term expected utility (see Tunney & Shanks, 2002, for a
similar discussion). However, the rational account fails to specify how this
optimal strategy should be determined in an unknown environment.

Indeed, one interesting question concerns the process by which learners
arrive at eVective strategies in these kinds of highly interactive and dynamic
tasks. By one account, subjects reason in an abstract way about the contin-
gencies in the task and eVortfully evaluate the costs and benefits of various
choice strategies. Such a strategy might involve explicit planning and
sequencing of future choices, as well as evaluation of candidate plans
through hypothesis testing. Instead, we propose that people engage in a
trial‐by‐trial value estimation procedure using reinforcement learning.
Success under this scheme is closely linked to people’s representation of the
underlying state of the system, which can be inferred from perceptual cues in
the environment. Here, as in our previous examples, abstract behavior
appears to emerge naturally from a learning process which is more directly
grounded in concrete experience.

B. BOOTSTRAPPING ABSTRACT STRATEGIES FROM CONCRETE CUES

In one set of experiments (Gureckis & Love, xxxx Au4b), we evaluated how
subjects use cues about their current state to support their learning and
decision making abilities. The term state simply refers to a discrete situation
that a situated agent may be in with respect to their environment. For
example, a state might correspond to an agent being in a particular location
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in a maze. For agents interacting in an unknown environment, successful
identification of the current state can provide important source of informa-
tion that can help structure their behavior. For example, when an agent
determines they are in a particular location in a maze, they can use that
knowledge to help determine which direction to head next in order to
increase the chances of successful escape. While representations of the cur-
rent state can help determine which actions to take in particular situations,
identifying task‐relevant states in an unknown environment can be challeng-
ing. For example, in a maze it is often possible to arrive at physically diVerent
locations which are perceptually identical (for example, two hallways which
have the same configuration of doorways and junctions). In this case, the
agent must deal with the problem of perceptual aliasing (McCallum, 1993;
Whitehead & Ballard, 1991), where multiple percepts may map onto a single
state or situation in the world.

Determining the mapping from observations in the world to relevant task
states about which the agent can learn is often a nontrivial problem. For
example, in the standard version of the Farming on Mars task, successive
states of the task environment are not clearly distinguished from one another.
Figure 7 and the associated caption describe the payoV structure of the basic
version of the task. Note that each time a player makes a choice, the
underlying state of the task system can change so that reward possibilities
on the next trial are diVerent than they were on the previous trial. However,
no discriminative cues are available about how the current state of the system
has changed as a result of the agents actions. As a result, functionally distinct
task states which lead to diVerent rewards tend to alias together, making it
diYcult for the learner to detect the subtle contingency between their past
actions and future rewards. Indeed, one hypothesis tested in our studies is
that the aliasing of functionally distinct task states might partially explain
why subjects seem to prefer short‐term, melioration strategies.

We consider how to limit this aliasing and encourage learners to adopt
useful representations of the state structure of the task. Subjects in our
experiment were assigned to one of three conditions which provided diVerent
kinds of perceptual cues about the current state of the Mars farming system.
In the no‐cue condition, subjects were tested in the simple two‐choice task
described above and were given no additional information. Subjects in this
condition were susceptible to perceptual aliasing of successive task states as
there was no discriminative information available to indicate how the task
environment was changing in response to the learners’ actions. In two other
conditions (the shuZed‐cue and consistent‐cue conditions) subjects display
was augmented to include a row of indicator lights. Only one of these lights
was active at any point in time, the position of which correlated with the
current state of the system.
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In the consistent‐cue condition, the indicator lights were organized in a
regular fashion such that the active light moved one position either to the left
or to the right as the state was updated. In other words, the light veridically
represented the current position of the task environment along the horizontal
axis in Fig. 7. In this condition, neighboring states in the task corresponded
to neighboring positions of the indicator light. The shuZed‐cue condition
also featured indicator lights, but the relationship between neighboring states
was obscured by randomly assigning each state to a particular light. In the
shuZed‐cue condition, the position of the light was still perfectly predictive
of the underlying state of the farming system, but the relationship between
successive states and the magnitude of the reward signal was less obvious
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Fig. 7. The payoV structure for the Farming on Mars task used in Gureckis & Love (xxxxb Au17,

Exp. 1). Unknown to subjects, one option (i.e. robot) always generates more oxygen than the
other on any given trial. For example, at the midpoint along the horizontal axis, selecting the

more immediately productive option (referred to as the short‐term option) would generate 1300

oxygen units, whereas selecting the other option (referred to as the long‐term option) would

generate only 800 oxygen units. However, each time the short‐term option is selected, the
expected output of both options is lowered on the following trial (i.e., the state of the system

shifts to the left). Selections of the long‐term option behave in the opposite fashion. The current

state of the system (i.e. position along the horizontal axis) depends on the number of long‐term
selections subjects make over the preceding ten trials. Note that the reward received from

repeatedly selecting the long‐term option exceeds that from always selecting the short‐term
option (i.e., the highest point of the long‐term option curve is above the lowest point for the

short‐term option curve). As a result, the optimal strategy is to select the long‐term option on
every trial, even though selecting the short‐term option would earn more on any single trial.
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because neighboring states are unlikely to have neighboring indicator lights
(e.g., the lit indicator could ‘‘jump’’ as one moves from state to state). We
predicted that systematic cues which aVord generalization between successive
states (such as those in the consistent‐cue condition) would be most eVective
for learning as they allow experience in one state to be easily generalized to
related states. Note that the addition of the perceptual cue in the consistent‐
cue and shuZed‐cue conditions does not render the task trivial—subjects still
need to learn that the short‐term option yields less reward over the course of
the experiment than the long‐term option to excel at the task.

Figure 8 shows the basic pattern of results from Experiment 1 of Gureckis
and Love (xxxxb Au5). In the no‐cue condition, subjects had no strong preference
for either option (the proportion of trials in which the long‐term maximizing
response was selected was .52). In contrast, subjects in the consistent‐cue
condition made significantly more selections of the long‐term, reward‐
maximizing option (.76) compared to either the shuZed‐cue (.57) or no‐cue
conditions. This pattern of results suggests that an important factor limiting
performance in the standard version of the task is in identifying the current
task state. When given a simple cue which reflected the underlying state of the
system (the purpose of which was never explicitly explained), subjects per-
formance drastically improved. Note that the advantage for state informa-
tion also extends to the shuZed‐cue condition. Subjects in this condition
started out with a tendency to select the short‐term, impulsive option, but
later switched to moderately favor the long‐term, maximizing‐response
option. However, subjects’ performance appears to benefit most in the
consistent‐cue condition where the dynamics of the state indicator cue were
consistent with the true underlying structure of successive task states.

In summary, subjects in our experiment generally failed to find a reward
maximizing strategy unless they were given cues about the current state of the
task environment. These results are particularly interesting, given previous
work showing that across a variety of manipulations designed to encourage
long‐term responding, subjects seem to prefer suboptimal strategies (Neth
et al., 2006; Tunney & Shanks, 2002). Across the three experimental condi-
tions, subjects’ task was held constant. The only diVerence concerned the
presence and dynamic structure of cues that reflected of the underlying state
of the task environment. Subjects’s learning abilities appear to bootstrap oV
these concrete perceptual features. Without cues, learners had diYculty
constructing an abstract representation of the task dynamics which impaired
their ability to detect the relationship between their actions and future
rewards. The ability to eVectively discover and use an abstract rule may
first depend on identifying the correct mental representation of the task
environment, which itself maybe tied to concrete, perceptual aspects of the
learning environment.
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The time course of learning in the task reveals interesting details about the
way that subjects learned about the reward contingencies in the task. In all
three conditions, subjects started out with a bias toward the short‐term
impulsive option, but gradually increased the proportion of trials on which
they selected the long‐term option (Fig. 8B). The specific shape of this pattern
(early melioration followed by a gradual shift toward maximizing) suggests
that subjects incrementally explored the task environment. Early in learning
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Fig. 8. Overall results of Experiment 1 and accompanying simulations from Gureckis and

Love (xxxx Au18b). Panel A shows the average proportion of maximizing response made throughout

the experiment as a function of condition for both human subjects and the model. Panel B

presents performance curves for human subjects calculated as the average proportion of max-
imizing responses considered in blocks of 50 trials at a time for all three condition. Error bars are

standard errors of the mean. Panel C shows the same performance curves for the model.
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and prior to much exploration, subjects settled on a suboptimal short‐term
strategy. However, later in the task, as random, exploratory actions accu-
mulated performance gradually improved. Closer analyses of individual
subjects response trajectory showed that the shift from short‐ to long‐term
responding was in most cases gradual, taking place over a period of 100 or
more trials.

C. USING REINFORCEMENT LEARNING TO MODEL

TASK PERFORMANCE

In order to understand the cognitive processes that underlie performance in
the task we developed a simple computational model within the Reinforce-
ment Learning (RL) framework (Sutton & Barto, 1998). RL is an agent‐
based approach to learning through interaction with the environment. In
recent years, RL has attracted considerable attention based on its success in
both practical applications (such as flying helicopters, Bagnell & Schneider,
2001, Au6; 7and teaching computers to play backgammon, Tesauro, 1994), and in
the modeling of biological systems (Daw & Touretzky, 2002; Montague,
Dayan, & Sejnowski, 1996; Montague, Dayan, Person, & Sejnowski, 1995;
Schultz, Dayan, & Montague, 1997; Suri, Bargas, & Arbib, 2001). What
makes RL an interesting tool for understanding higher‐level cognition
is the fact that it details how situated learners can bootstrap eVective
behavioral strategies through self‐guided interactions with an unknown
environment.

A key feature of the simple RL models considered here is their ability to
develop strategies that take into account delayed outcomes. However, unlike
classical planning methods from artificial intelligence, our model can learn
what appear to be far‐sighted strategies in an incremental, trial‐by‐trial
fashion. Our account is fundamentally shortsighted and reactive: The agent’s
only goal is to greedily choose whichever action is estimated to be best on
each trial. However, through a trial‐by‐trial update procedure the model is
able to learn estimates which reflect the long‐term value of actions. Through
a simple bootstrapping procedure (related to the well‐known temporal‐
diVerence algorithm, Sutton & Barto, 1998), immediate online experience is
passed backwards to adjust the estimates of previous executed actions.
Through a combination of learning, exploration, and bootstrapping, global-
ly optimal rule‐like behavior can emerge in the model through direct error‐
driven learning. In the interest of brevity, we refer the reader to Gureckis
and Love (xxxxb Au8) for the mathematical details of the model, and instead
elaborate three psychological principles that motivate the model.
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1. Principle 1: Learning Depends on Subjects’
Mental Representation of the Task

On each trial, the model assumes that people attempt to choose the actions
(or robot) that they estimate will earn the most reward over the long run. To
do this, the model maintains estimates the long‐term value of selecting a
particular action a in state s, as a value referred to as Q(s, a) (or more
generally a Q‐value). Note, however, that because the estimate of any action
depends on the current task state, s, subjects’ identification of the true state of
the environment plays a fundamental role in learning. Indeed, the model’s
estimate of the Q‐value of a particular action on any trial is a simple linear
function of the current input cues (which correspond to the indicator lights
presented to subjects in the task). The model attempts to learn the mapping
between input cues and theQ‐values associated with each state using a simple
single‐layer network (Widrow & HoV, 1960). Changing the types of input
cues the model is given modulates the ability of the model to learn the
appropriate representation of the state structure of the task and ultimately
influences its ability to uncover an optimal response strategy.

2. Principle 2: Learning Involves Taking into
Account Future Rewards

Each time an action is selected, the model updates its current estimate of the
corresponding Q‐value according to the temporal‐diVerence error between
the reward received as a result of that action and a current estimate of the
future reward available from the following state‐action pair. The model’s
asymptotic estimate of the value of each action depends on the relative
weight given to immediate versus delayed rewards. In our model, the degree
to which learners value short‐ or long‐term rewards is determined by a simple
discounting parameter (!). When ! ¼ 0, the learning procedure in the model
reduces to the standard delta rule (Rescorla & Wagner, 1972; Wagner &
Rescorla, 1972; Widrow & HoV, 1960). Under these conditions, the model
strongly favors immediate rewards (and thus predicts melioration behavior
in the Farming on Mars task). As the value of ! increases, the model gives
more weight to future rewards, eventually allowing it to favor selections of
the long‐term robot.

3. Principle 3: Learning Involves Balancing Between
Exploration and Exploitation

Successful behavior in an unknown environment requires learners to balance
the exploration of unknown alternatives versus the exploitation of resources
or strategies that are known to be productive. In order to capture this
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tradeoV in the model, the estimated values of each state‐action pair are input
to a probabilistic choice mechanism that generates a final choice (Luce,
1959). Early in the task, this choice function favors exploration of actions
which may appear to be less profitable. However, overtime the operation of
this choice mechanism becomes more deterministic capturing the intuition
that early in the experiment subjects are more willing to explore diVerent
alternatives, but later their behavior shifts to exploit the known resources
they have uncovered.

In our simulations, the model was treated as an active participant in the
Farming on Mars task and was given the same number of trials as human
subject in which to explore the operation of the system and to uncover the
optimal strategy. On each simulated trial the model selected either the short‐
or long‐term option, the appropriate rewards were delivered, and the current
state of the task system was updated. Through its ongoing experience the
task, the model learns estimates of the value of choosing either the short‐
or long‐term option via an adaptive learning procedure described above
(Sutton, 1996 Au9; Sutton & Barto, 1998).

Changing the types of cues the model is given about the current state of the
system modulates the representation of the task that the model utilizes and
ultimately influences its ability to uncover the optimal strategy. In simula-
tions of the no‐cue condition, the model (like human subjects) was given no
discriminative information about the current task state. As a result, the
model was forced to treat the task as consisting of just one, highly aliased
state. In the consistent‐cue condition, the model was presented with a set of
input units that distinctly encoded the current position of the indicator light
on the display. The input representation given to the model roughly matches
the input provided to subjects, and allowed prediction and generalization
between nearby states. Finally, in the shuZed‐cue simulations, the input to
the model was erratic. In some cases, there were source of predictability that
the model could take advantage of, but in others the input cues could be
misleading or force the model to become trapped in local, suboptimal
solutions.

Figure 8A and C show the basic pattern of results. Using a single set of
parameters across all three conditions the model was able to provide an
excellent fit to the data. While the best fit parameters used to generate the
learning curves in Fig. 8 tended to emphasize considerable exploration early
on (thus the near‐chance responding in the first few trials of the task), many
other parameter combinations allowed the model to capture the trial‐by‐trial
dynamics of human performance curves. For example, after a few early
selections and prior to much exploration of the system, the model generally
favored the short‐term strategy of selecting the impulsive option on each
trial. However, after a short period of time following this impulsive strategy,
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the continued accumulation of exploratory decisions eventually helps to shift
the model toward a reward maximizing strategy.

Critically, learning in the model takes the form of trial‐by‐trial updates to
estimates of the long‐term value of each action in each possible state. In each
state, the model is biased to choose the action whose estimated earnings are
highest. However, there is no global representation in the model that repre-
sents a general rule about how to behave. Instead, performance is heavily tied
to moment‐to‐moment estimates of estimated values of particular actions.
In addition, our simulations show that learning critically depends on the
structure of cues in the environment, which, in turn, structure the model’s
mental representation of the task. In the no‐cue condition, the model fails to
show any learning because all states collapse together. Building from this
representation, the model has trouble developing a strategy which favors
either option. In contrast, in the shuZed‐cue and consistent‐cue conditions,
the structure of concrete, perceptual information in the environment helps to
provide a framework for interpreting and integrating feedback.

D. DISCUSSION

The experimental and simulation results reviewed in this section suggest that
reasoning about complex systems can be accomplished through concrete
means. All three conditions in our experiment involved the same reward
structure, but subjects’ performance across conditions varied as a function
of the perceptual cues provided. We had success in helping subjects enrich
their representation of the task environment by providing perceptual cues
which reflected the underlying task state.

Overall, our results suggest that debates about rationality or optimality
may be ill conceived. Learning in our task appears optimal with respect to
the representation the learner adopts of the task environment which may
or may not be congruent to the actual environment dynamics. The ability to
approach the true ‘‘optimal’’ depended on the structure of concrete cues
about system state in the environment. In this sense, abstract performance
was shown to depend on concrete features of the environment.

Finally, our results show that subjects’ ability to learn an eVective control
strategy is well accounted for by a simple RL learning based on trial‐by‐trial
learning updates and simple task representations. Unlike other methods, the
RL agent simulations did not explicitly plan, but instead reasoned in a
reactive manner. Rather than engage in hypothesis testing strategies, the
RL agent estimated the value of possible options by trial‐by‐trial updates.
In addition, we oVer a novel take on previous findings showing that humans
and other animals prefer impulsive, short‐term gains over higher utility
future outcomes by suggesting that some of these failures may actually derive
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from how learners represent the relevant states and dynamics underlying
their environment (as opposed to a failure in the ability to properly discount
future outcomes).

V. General Discussion

When observing a complex system, it is tempting to ascribe sophisticated
intentions and abilities. For instance, people sometimes believe machines,
like personal computers and cars, are conspiring against them. The job of the
cognitive psychologist is to observe the most complex of machines and
entertain theories of how it works. Perhaps it is not surprising that many
researchers believe humans possess transcendent and abstract thinking abil-
ities. After all, humans appear to acquire abstract understandings of domains
and reason in ways that indicate a deep understanding. In this chapter, we
argued through three cases that, while humans can perform impressively and
demonstrate broad generalization, our performance is intimately tied and
colored by the concrete examples we experience during learning. In eVect,
we never fully transcend our training set.

In the first case study, we examined how people appear to acquire and
apply rules. One popular account proposes multiple systems in which one
system applies abstract rules and another system stores items that violate
these rules (e.g., Nosofsky et al., 1994).

Instead, we found evidence for a single system in which both rule‐following
and rule‐violating items are stored in a common substrate. Recognition
performance for stimuli that violated rules indicated that the rules themselves
were rooted in experienced examples. In particular, items that violated more
frequent rules were remembered better. This eVect was also found in studies
that manipulated the similarity of rule‐following items to exceptions from the
opposing category. The results from both manipulations were explained by a
clustering model that sharpened its memory representations for exception
items in order to reduce confusions with rule‐following items from the
opposing category. The more extreme the confusions (because of either
numerosity or similarity relations), the greater the enhanced memory for
exception items. These results are both supportive of a clustering model
that updates its representation by trial‐by‐trial learning, and inconsistent
with dual route models that posit an abstract rule system. In summary,
even when people mentally rehearse and consciously apply rules, the concrete
details of the training examples aVect performance.

The second case study makes a much stronger claim—abstract concepts
and rules (i.e., concepts not reducible to a finite set of features) are in fact
grounded in experienced examples. A model that stored each example in
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memory as an exemplar and made analogies to these stored exemplars was
able to learn seemingly abstract concepts. In the first simulation, the model,
BRIDGES, successfully simulated infant learning of abstract rules consisting
of sound patterns. The model learned to extend the pattern to novel cases by
making analogies to previous cases. This simulation alone provides a power-
ful existence proof that abstract rules may not be necessary. The second
simulation tested a key prediction of BRIDGES that membership in seem-
ingly abstract concepts is graded and determined by the similarity to stored
examples. Data exploring how pigeons (and humans) learn the concepts of
same and diVerent were supportive of this prediction. After initial training on
pure cases of the two concepts, intermediate cases partially activated exem-
plars from both concepts leading to graded responding. The exact nature of
this gradient was predicted by BRIDGES notion of exemplar similarity,
which incorporates a notion of analogical match.

In the final case study, we considered how people reason about rewards in
dynamic environments in which learner’s actions aVect the underlying state
of the system (e.g., much like how humans aVect the climate). This study
brings our analysis closer to the kinds of learning problems that people face
in their daily lives. In these situations, do people reason explicitly about
system dynamics, form a plan for future actions, and test hypotheses about
the nature of the underlying system? While climatologists might undertake
such analyses, our results indicate that nonexperts learn about such systems
by exploring myopically and adjusting estimates of future rewards in a
trial‐by‐trial fashion.

People’s performance was consistent with simple reinforcement learning
models that incrementally learn about rewards and use these tentative esti-
mates of reward to bootstrap learning the long‐term value of particular
actions. People’s performance was consistent with simple reinforcement
learning models. These models incrementally learn about reward. Current
estimates of future reward are used to bootstrap improved estimates of the
long‐term value of particular actions. While reinforcement learning models
may appear to follow farsighted strategies, they are essentially reactive and
do not explicitly plan ahead. Such models are exquisitely sensitive to how the
state of the system is represented. Human subjects also proved to be sensitive
to state representation. When human subjects were given a consistent cue to
the underlying state of the system, they were able overcome an option that
was more attractive in the short term and instead learned to prefer the option
that was optimal in the long term.

These three cases demonstrate the power and richness of learning systems
that learn by exposure to concrete examples. All three case studies involve
fairly sophisticated and adaptive behaviors. The three models reach
human proficiency in each case and correctly predict the idiosyncrasies of
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human behavior. These idiosyncrasies arise from our concepts being rooted
in experienced examples and updated by incremental learning processes.
One general lesson from these studies is that one should be cautious
in making claims about the representational machinery needed to capture
human behavior.

The three case studies we considered here each invoke a diVerent model‐
based explanation. One key question is whether the models from the three
case studies are the same in some sense. Certainly, the models diVer in their
details, but all three models learn incrementally, are myopic, are bound by
experienced examples, and do not engage in hypothesis testing. Numerous
relations exist among the three models. The BRIDGES model from the
second case study generalizes ALCOVE, which itself is conceptually related
to the CLUSTER model from the first case study. Work is currently under-
way on a version of BRIDGES that, instead of exemplars, represents con-
cepts by clusters that are recruited in response to surprising events as in
SUSTAIN and CLUSTER.Matt Jones and the first author have developed a
reinforcement learning version of the CLUSTER model. This model oVers a
connection to the reinforcement learning model showcased in the third case
study. One exciting possibility is incorporating analogical notions of similar-
ity into reinforcement learning models. Doing so would enable generaliza-
tion across analogical states, which could greatly speed learning. All three
models considered here incorporate error terms that are minimized.
Although all three models are distinct, common themes emerge and avenues
for unifying these three models are within reach.

One common theme that emerges across models is that details of the
training set are retained. Humans appear to operate in a similar fashion.
One question is why would evolutionary processes or within individual
learning processes settle on such a solution. One answer is robustness.
Grounding performance and generalization in concrete cues present in the
environment is a conservative strategy that increases system robustness and
stability. Models grounded in these details are less likely to become
decoupled from environmental feedback and run amok. Also, details that
appear irrelevant at the current moment may prove critical in the future. The
complexity and dynamic nature of our environment might dictate such
learning mechanisms.

Our discussion has been titled in favor of single system models over multi-
ple system models, particularly in regards to multiple system models contain-
ing a rule route. To clarify our stance, we are not opposed to multiple system
proposals in general, but we do believe that successful multiple system propo-
sals will be bounded by experienced examples. Of course, proposing multiple
systems does not in itself guarantee success. The second case study makes this
point by demonstrating that existing dual system accounts do not account for
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human rule‐plus‐exception learning behavior. We take our results to indicate
that models must be both adaptable and grounded in experienced examples,
like the CLUSTERmodel. We are agnostic about whether such proposals are
best described as single or multiple learning system models.

One strength of our theoretical outlook is that it does not demand leaps of
imagination to accept. In contrast, we do not see in principle how the human
brain could acquire truly abstract representations given that our perceptions
and actions are embedded in a noisy world of concrete examples. Evoking a
nativist position does not solve the conundrum, as abstract representations
would need to be learned over evolutionary time andmust be retrieved within
the individual’s life via perceptual cues in the environment. Our account also
has the advantage of not being at odds with sensible intuitions about onto-
genetic and phylogenetic continuity. We predict that other species (e.g.,
pigeons) are cleverer than we expect and that the abstract nature of our
own thought is overstated.
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